scispace - formally typeset
Search or ask a question

Showing papers on "Receptive field published in 2005"


Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: An anatomically distinct population of ‘giant’, melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field.
Abstract: Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.

1,200 citations


Journal ArticleDOI
22 Apr 2005-Science
TL;DR: Serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene by recordings of neurons freely scanning a complex array to find a target defined by color, shape, or both.
Abstract: To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene. To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene.

646 citations


Journal ArticleDOI
20 Oct 2005-Neuron
TL;DR: It is shown that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms.

607 citations


Journal ArticleDOI
16 Jun 2005-Neuron
TL;DR: This analysis reveals an unsuspected richness of neuronal computation within V1, where simple and complex cell responses are best described using more linear filters than the one or two found in standard models.

475 citations


Journal ArticleDOI
TL;DR: The visual and tactile receptive fields of multimodal VIP neurons in macaque monkeys trained to gaze at three different stationary targets were mapped and found to be encoded into a single somatotopic, or head-centered, reference frame, whereas visual receptive fields were widely distributed between eye- to head- centered coordinates.
Abstract: The ventral intraparietal area (VIP) receives converging inputs from visual, somatosensory, auditory and vestibular systems that use diverse reference frames to encode sensory information. A key issue is how VIP combines those inputs together. We mapped the visual and tactile receptive fields of multimodal VIP neurons in macaque monkeys trained to gaze at three different stationary targets. Tactile receptive fields were found to be encoded into a single somatotopic, or head-centered, reference frame, whereas visual receptive fields were widely distributed between eye- to head-centered coordinates. These findings are inconsistent with a remapping of all sensory modalities in a common frame of reference. Instead, they support an alternative model of multisensory integration based on multidirectional sensory predictions (such as predicting the location of a visual stimulus given where it is felt on the skin and vice versa). This approach can also explain related findings in other multimodal areas.

442 citations


Journal ArticleDOI
07 Jul 2005-Nature
TL;DR: It is shown that a network model with plastic synapses can account for the large variety of observed adaptations in retinal ganglion cells, and that when this happens, the retina adjusts its processing dynamically.
Abstract: Retinal ganglion cells convey the visual image from the eye to the brain. They generally encode local differences in space and changes in time rather than the raw image intensity. This can be seen as a strategy of predictive coding, adapted through evolution to the average image statistics of the natural environment. Yet animals encounter many environments with visual statistics different from the average scene. Here we show that when this happens, the retina adjusts its processing dynamically. The spatio-temporal receptive fields of retinal ganglion cells change after a few seconds in a new environment. The changes are adaptive, in that the new receptive field improves predictive coding under the new image statistics. We show that a network model with plastic synapses can account for the large variety of observed adaptations.

411 citations


Journal ArticleDOI
TL;DR: The very similar time courses of spatial and temporal compression suggest that both are mediated by a common neural mechanism, probably related to the predictive shifts that occur in receptive fields of many visual areas at the time of saccades.
Abstract: There is now considerable evidence that space is compressed when stimuli are flashed shortly before or after the onset of a saccadic eye movement. Here we report that short intervals of time between two successive perisaccadic visual (but not auditory) stimuli are also underestimated, indicating a compression of perceived time. We were even more surprised that in a critical interval before saccades, perceived temporal order is consistently reversed. The very similar time courses of spatial and temporal compression suggest that both are mediated by a common neural mechanism, probably related to the predictive shifts that occur in receptive fields of many visual areas at the time of saccades.

377 citations


Journal ArticleDOI
TL;DR: This study investigates temporal slowness as a learning principle for receptive fields using slow feature analysis, a new algorithm to determine functions that extract slowly varying signals from the input data.
Abstract: In this study we investigate temporal slowness as a learning principle for receptive fields using slow feature analysis, a new algorithm to determine functions that extract slowly varying signals from the input data. We find a good qualitative and quantitative match between the set of learned functions trained on image sequences and the population of complex cells in the primary visual cortex (V1). The functions show many properties found also experimentally in complex cells, such as direction selectivity, non-orthogonal inhibition, end-inhibition, and side-inhibition. Our results demonstrate that a single unsupervised learning principle can account for such a rich repertoire of receptive field properties.

346 citations


Journal ArticleDOI
TL;DR: In vivo intracellular recordings from thalamorecipient neurons in layers 3 and 4 of the rat barrel cortex are used to elucidate the dynamics of the synaptic inputs underlying direction selectivity, and it is shown that cells are direction selective despite a broadly tuned excitatory and inhibitory synaptic input.
Abstract: Neurons in sensory systems respond to stimuli within their receptive fields, but the magnitude of the response depends on specific stimulus features. In the rodent whisker system, the response magnitude to the deflection of a particular whisker is, in most cells, dependent on the direction of deflection. Here we use in vivo intracellular recordings from thalamorecipient neurons in layers 3 and 4 of the rat barrel cortex to elucidate the dynamics of the synaptic inputs underlying direction selectivity. We show that cells are direction selective despite a broadly tuned excitatory and inhibitory synaptic input. Selectivity emerges from a direction-dependent temporal shift of excitation relative to inhibition. For preferred direction deflections, excitation precedes inhibition, but as the direction diverges from the preferred, this separation decreases. Our results illustrate a mechanism by which the timing of the synaptic inputs, and not their relative peak amplitudes, primarily determine feature selectivity.

314 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that macaque area VIP neurons also respond to auditory stimulation, which suggests that area VIP constitutes a part of a neuronal circuit involved in the computation of a modality-invariant representation of external space.
Abstract: Animals can use different sensory signals to localize objects in the environment. Depending on the situation, the brain either integrates information from multiple sensory sources or it chooses the modality conveying the most reliable information to direct behavior. This suggests that somehow, the brain has access to a modality-invariant representation of external space. Accordingly, neural structures encoding signals from more than one sensory modality are best suited for spatial information processing. In primates, the posterior parietal cortex (PPC) is a key structure for spatial representations. One substructure within human and macaque PPC is the ventral intraparietal area (VIP), known to represent visual, vestibular, and tactile signals. In the present study, we show for the first time that macaque area VIP neurons also respond to auditory stimulation. Interestingly, the strength of the responses to the acoustic stimuli greatly depended on the spatial location of the stimuli [i.e., most of the auditory responsive neurons had surprisingly small spatially restricted auditory receptive fields (RFs)]. Given this finding, we compared the auditory RF locations with the respective visual RF locations of individual area VIP neurons. In the vast majority of neurons, the auditory and visual RFs largely overlapped. Additionally, neurons with well aligned visual and auditory receptive fields tended to encode multisensory space in a common reference frame. This suggests that area VIP constitutes a part of a neuronal circuit involved in the computation of a modality-invariant representation of external space.

299 citations


Journal ArticleDOI
TL;DR: Two mechanisms of surround suppression are points to the existence of: one that is prominent when high-contrast stimuli drive the CRF, is orientation selective, has relatively sharp spatiotemporal tuning, is binocularly driven, and can be substantially desensitized by adaptation; the other is relatively more prominent when low-cont contrast stimulus drive theCRF, has very broad spatiotmporal tuned, is monocularlydriven, and is insusceptible to adaptation.
Abstract: The response of a neuron in striate cortex to an optimally configured visual stimulus is generally reduced when the stimulus is enlarged to encroach on a suppressive region that surrounds its classical receptive field (CRF). To characterize the mechanism that gives rise to this suppression, we measured its spatiotemporal tuning, its susceptibility to contrast adaptation, and its capacity for interocular transfer. Responses to an optimally configured grating confined to the CRF were strongly suppressed by annular surrounding gratings drifting at a wide range of temporal and spatial frequencies (including spatially uniform fields) that extended from well below to well above the range that drives most cortical neurons. Suppression from gratings capable of driving cortical CRFs was profoundly reduced by contrast adaptation and showed substantial interocular transfer. Suppression from stimuli that lay outside the spatiotemporal passband of most cortical CRFs was relatively stronger when the stimulus on the CRF was of low contrast, was generally insusceptible to contrast adaptation, and showed little interocular transfer. Our findings point to the existence of two mechanisms of surround suppression: one that is prominent when high-contrast stimuli drive the CRF, is orientation selective, has relatively sharp spatiotemporal tuning, is binocularly driven, and can be substantially desensitized by adaptation; the other is relatively more prominent when low-contrast stimuli drive the CRF, has very broad spatiotemporal tuning, is monocularly driven, and is insusceptible to adaptation. Its character suggests an origin in the input layers of primary visual cortex, or earlier.

Journal ArticleDOI
TL;DR: The suppressive field is characterized and found that it is similar in size to the surround of the classical receptive field, it is not selective for stimulus orientation, and it responds to a wide range of frequencies, including very low spatial frequencies and high temporal frequencies.
Abstract: The responses of neurons in lateral geniculate nucleus (LGN) exhibit powerful suppressive phenomena such as contrast saturation, size tuning, and masking These phenomena cannot be explained by the classical center-surround receptive field and have been ascribed to a variety of mechanisms, including feedback from cortex We asked whether these phenomena might all be explained by a single mechanism, contrast gain control, which is inherited from retina and possibly strengthened in thalamus We formalized an intuitive model of retinal contrast gain control that explicitly predicts gain as a function of local contrast In the model, the output of the receptive field is divided by the output of a suppressive field, which computes the local root-mean-square contrast The model provides good fits to LGN responses to a variety of stimuli; with a single set of parameters, it captures saturation, size tuning, and masking It also correctly predicts that responses to small stimuli grow proportionally with contrast: were it not for the suppressive field, LGN responses would be linear We characterized the suppressive field and found that it is similar in size to the surround of the classical receptive field (which is eight times larger than commonly estimated), it is not selective for stimulus orientation, and it responds to a wide range of frequencies, including very low spatial frequencies and high temporal frequencies The latter property is hardly consistent with feedback from cortex These measurements thoroughly describe the visual properties of contrast gain control in LGN and provide a parsimonious explanation for disparate suppressive phenomena

Journal ArticleDOI
24 Mar 2005-Neuron
TL;DR: Surprisingly, most of these properties are established soon after dendrite growth and synaptogenesis begin and do not require patterned visual experience or a protracted period of refinement.

Journal ArticleDOI
TL;DR: A distinct pattern of STRF change is found in ferret primary auditory cortex, characterized by an expected selective enhancement at target tone frequency but also by an equally selective depression at reference tone frequency.
Abstract: Auditory experience leads to myriad changes in processing in the central auditory system. We recently described task-related plasticity characterized by rapid modulation of spectro-temporal receptive fields (STRFs) in ferret primary auditory cortex (A1) during tone detection. We conjectured that each acoustic task may have its own "signature" STRF changes, dependent on the salient cues that the animal must attend to perform the task. To discover whether other acoustic tasks could elicit changes in STRF shape, we recorded from A1 in ferrets also trained on a frequency discrimination task. Overall, we found a distinct pattern of STRF change, characterized by an expected selective enhancement at target tone frequency but also by an equally selective depression at reference tone frequency. When single-tone detection and frequency discrimination tasks were performed sequentially, neurons responded differentially to identical tones, reflecting distinct predictive values of stimuli in the two behavioral contexts. All results were observed in multiunit as well as single-unit recordings. Our findings provide additional evidence for the presence of adaptive neuronal responses in A1 that can swiftly change to reflect both sensory content and the changing behavioral meaning of incoming acoustic stimuli.

Journal ArticleDOI
03 Mar 2005-Neuron
TL;DR: This study used a nonlinear technique to compute the RFs of complex cells from their responses to natural images, and found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass.

Journal ArticleDOI
TL;DR: The results are interpreted as suggesting that although the representations of space in areas LIP and MIP are not easily described within the conventional conceptual framework of reference frames, they nevertheless process visual and auditory spatial information in a similar fashion.
Abstract: The integration of visual and auditory events is thought to require a joint representation of visual and auditory space in a common reference frame. We investigated the coding of visual and auditor...

Journal ArticleDOI
TL;DR: The presence of both tonotopic and non-tonotopic auditory cortical fields indicates that the organization of ferret auditory cortex is comparable to that seen in other mammals.
Abstract: We characterized the functional organization of different fields within the auditory cortex of anaesthetized ferrets. As previously reported, the primary auditory cortex, A1, and the anterior auditory field, AAF, are located on the middle ectosylvian gyrus. These areas exhibited a similar tonotopic organization, with high frequencies represented at the dorsal tip of the gyrus and low frequencies more ventrally, but differed in that AAF neurons had shorter response latencies than those in A1. On the basis of differences in frequency selectivity, temporal response properties and thresholds, we identified four more, previously undescribed fields. Two of these are located on the posterior ectosylvian gyrus and were tonotopically organized. Neurons in these areas responded robustly to tones, but had longer latencies, more sustained responses and a higher incidence of non-monotonic rate-level functions than those in the primary fields. Two further auditory fields, which were not tonotopically organized, were found on the anterior ectosylvian gyrus. Neurons in the more dorsal anterior area gave short-latency, transient responses to tones and were generally broadly tuned with a preference for high (>8 kHz) frequencies. Neurons in the other anterior area were frequently unresponsive to tones, but often responded vigorously to broadband noise. The presence of both tonotopic and non-tonotopic auditory cortical fields indicates that the organization of ferret auditory cortex is comparable to that seen in other mammals.

Journal ArticleDOI
TL;DR: Comparisons between the structure of receptive fields recorded from the different layers of the cat's primary visual cortex suggest connections unique to each visual cortical layer are likely to serve distinct functions.
Abstract: Here we ask whether visual response pattern varies with position in the cortical microcircuit by comparing the structure of receptive fields recorded from the different layers of the cat's primary visual cortex. We used whole-cell recording in vivo to show the spatial distribution of visually evoked excitatory and inhibitory inputs and to stain individual neurons. We quantified the distribution of 'On' and 'Off' responses and the presence of spatially opponent excitation and inhibition within the receptive field. The thalamorecipient layers (4 and upper 6) were dominated by simple cells, as defined by two criteria: they had separated On and Off subregions, and they had push-pull responses (in a given subregion, stimuli of the opposite contrast evoked responses of the opposite sign). Other types of response profile correlated with laminar location as well. Thus, connections unique to each visual cortical layer are likely to serve distinct functions.

Journal ArticleDOI
TL;DR: The results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

Journal ArticleDOI
TL;DR: Surprisingly, it is found that, unlike overlay suppression, surround suppression is only strong in the periphery (>1° eccentricity), which argues for a new functional distinction between foveal and peripheral operations.
Abstract: Cortical visual neurons in the cat and monkey are inhibited by stimuli surrounding their receptive fields (surround suppression) or presented within their receptive fields (cross-orientation or overlay suppression). We show that human contrast sensitivity is similarly affected by two distinct suppression mechanisms. In agreement with the animal studies, human surround suppression is tightly tuned to the orientation and spatial frequency of the test, unlike overlay suppression. Using a double-masking paradigm, we also show that in humans, overlay suppression precedes surround suppression in the processing sequence. Surprisingly, we find that, unlike overlay suppression, surround suppression is only strong in the periphery (>1° eccentricity). This result argues for a new functional distinction between foveal and peripheral operations.

Journal ArticleDOI
TL;DR: It is found that attention appears to cause multiplicative scaling of the visually evoked responses of simple cells, demonstrating that attention reaches back to the initial stages of visual cortical processing.
Abstract: Spatial attention has long been postulated to act as a spotlight that increases the salience of visual stimuli at the attended location. We examined the effects of attention on the receptive fields of simple cells in primary visual cortex (V1) by training macaque monkeys to perform a task with two modes. In the attended mode, the stimuli relevant to the animal's task overlay the receptive field of the neuron being recorded. In the unattended mode, the animal was cued to attend to stimuli outside the receptive field of that neuron. The relevant stimulus, a colored pixel, was briefly presented within a white-noise stimulus, a flickering grid of black and white pixels. The receptive fields of the neurons were mapped by correlating spikes with the white-noise stimulus in both attended and unattended modes. We found that attention could cause significant modulation of the visually evoked response despite an absence of significant effects on the overall firing rates. On further examination of the relationship between the strength of the visual stimulation and the firing rate, we found that attention appears to cause multiplicative scaling of the visually evoked responses of simple cells, demonstrating that attention reaches back to the initial stages of visual cortical processing.

Journal ArticleDOI
TL;DR: Local application of a GABA(A) receptor antagonist revealed that intracortical inhibition contributes to this progressive receptive field maturation for response selectivity in frequency.
Abstract: The mechanisms by which hearing selectivity is elaborated and refined in early development are very incompletely determined. In this study, we documented contributions of progressively maturing inhibitory influences on the refinement of spectral and temporal response properties in the primary auditory cortex. Inhibitory receptive fields (IRFs) of infant rat auditory cortical neurons were spectrally far broader and had extended over far longer duration than did those of adults. The selective refinement of IRFs was delayed relative to that of excitatory receptive fields by an ≈2-week period that corresponded to the critical period for plasticity. Local application of a GABAA receptor antagonist revealed that intracortical inhibition contributes to this progressive receptive field maturation for response selectivity in frequency. Conversely, it had no effect on the duration of IRFs or successive-signal cortical response recovery times. The importance of exposure to patterned acoustic inputs was suggested when both spectral and temporal IRF maturation were disrupted in rat pups reared in continuous, moderate-intensity noise. They were subsequently renormalized when animals were returned to standard housing conditions as adults.

Journal ArticleDOI
24 Mar 2005-Neuron
TL;DR: Recordings of excitatory and inhibitory postsynaptic currents in TC neurons in mouse brain slices suggest that locked inhibition improves the precision of synaptically evoked responses in individual TC neurons by eliminating secondary spikes.

Journal ArticleDOI
24 Mar 2005-Neuron
TL;DR: It is found that RFs determined by excitatory and inhibitory inputs in more mature tectal neurons are spatially matched, with each spot stimulus evoking balanced synaptic excitation and inhibition.

Journal ArticleDOI
TL;DR: Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) read out.
Abstract: Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.

Journal ArticleDOI
TL;DR: It is shown that local iontophoretic application of ACh in primate primary visual cortex reduced the extent of spatial integration and enhanced the response in the majority of cells, especially in the later (sustained) part of the response.
Abstract: Recent in vitro studies have shown that acetylcholine (ACh) selectively reduces the efficacy of lateral cortical connections via a muscarinic mechanism, while boosting the efficacy of thalamocortical/feed-forward connections via a nicotinic mechanism. This suggests that high levels of ACh should reduce center-surround interactions of neurons in primary visual cortex, making cells more reliant on feed-forward information. In line with this hypothesis, we show that local iontophoretic application of ACh in primate primary visual cortex reduced the extent of spatial integration, assessed by recording a neurons' length tuning. When ACh was externally applied, neurons' preferred length shifted toward shorter bars, showing reduced impact of the extra-classical receptive field. We fitted a difference and a ratio of Gaussian model to these data to determine the underlying mechanisms of this dynamic change of spatial integration. These models assume overlapping summation and suppression areas with different widths and gains to be responsible for spatial integration and size tuning. ACh significantly reduced the extent of the summation area, but had no significant effect on the extent of the suppression area. In line with previous studies, we also show that applying ACh enhanced the response in the majority of cells, especially in the later (sustained) part of the response. These findings are similar to effects of attention on neuronal activity. The natural release of ACh is strongly linked with states of arousal and attention. Our results may therefore be relevant to the neurobiological mechanism of attention.

Posted Content
TL;DR: The observed changes in firing rate and coherence of neurons in the visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging at gamma frequencies.
Abstract: Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential in the gamma-frequency range (30-50 Hz). The hypothesis explored here is that these observed effects of attention could be a consequence of changes in the synchrony of local interneuron networks. We performed computer simulations of a Hodgkin-Huxley type neuron driven by a constant depolarizing current, I, representing visual stimulation and a modulatory inhibitory input representing the effects of attention via local interneuron networks. We observed that the neuron's firing rate and the coherence of its output spike train with the synaptic inputs was modulated by the degree of synchrony of the inhibitory inputs. The model suggest that the observed changes in firing rate and coherence of neurons in the visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging at gamma frequencies.

Journal ArticleDOI
21 Apr 2005-Neuron
TL;DR: It is found that synchrony in spiking activity shows little dependence on feature grouping, whereas gamma band synchronyIn field potentials can be significantly stronger when features are grouped, but these effects are reduced when stimulus differences nearby the receptive fields are eliminated using partial occlusion.

Journal ArticleDOI
TL;DR: In this article, the effects of cathodal and anodal current pulses on the extracellularly recorded responses of rabbit retinal ganglion cells (RGCs) in an in vitro preparation were examined.
Abstract: Rational selection of electrical stimulus parameters for an electronic retinal prosthesis requires knowledge of the electrophysiological responses of retinal neurons to electrical stimuli. In this study, we examined the effects of cathodal and anodal current pulses on the extracellularly recorded responses of OFF and ON rabbit retinal ganglion cells (RGCs) in an in vitro preparation. Current pulses (1 msec duration), delivered by a 125 microm electrode placed on the inner retinal surface within the receptive field of a RGC, produced both short-latency (< or =5 msec) and long-latency (8-60 msec) responses. The long-latency responses, but not the short-latency responses, were abolished upon application of the glutamate receptor antagonists CNQX and NBQX, thus indicating that the long-latency responses of RGCs are due to activation of presynaptic neurons in the retina. The latency of the long-latency response depended upon the polarity of the stimulus. For OFF RGCs, the average latency was 11 msec for a cathodal stimulus and 24 msec for an anodal stimulus. For ON RGCs, the average latency was 25 msec for a cathodal stimulus and 16 msec for an anodal stimulus. The threshold current also depended upon the polarity of the stimulus, at least for OFF RGCs. The average threshold current for evoking a long-latency response in OFF RGCs was 10 microA for a cathodal stimulus and 21 microA for an anodal stimulus. In ON RGCs, the average threshold current was 13 microA for a cathodal stimulus and 15 microA for an anodal stimulus.

Journal ArticleDOI
17 Feb 2005-Neuron
TL;DR: Both oriented and unoriented color-selective cells in V1 are important components of the neural pathways that underlie perception of color and indicated that they each produced strong signals in V 1 and other human visual areas.