scispace - formally typeset
Search or ask a question
Topic

Receptive field

About: Receptive field is a research topic. Over the lifetime, 8537 publications have been published within this topic receiving 596428 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In vivo two-photon calcium imaging is used to independently map ON and OFF receptive field subregions of local populations of layer 2/3 neurons in mouse visual cortex to provide the first characterization of the diversity of receptive fields in a dense local network of visual cortex and reveal elementary units of receptive field organization.
Abstract: Visual cortex exhibits smooth retinotopic organization on the macroscopic scale, but it is unknown how receptive fields are organized at the level of neighboring neurons. This information is crucial for discriminating among models of visual cortex. We used in vivo two-photon calcium imaging to independently map ON and OFF receptive field subregions of local populations of layer 2/3 neurons in mouse visual cortex. We found that receptive field subregions are often precisely shared among multiple neighboring neurons. Furthermore, large subregions appear to be assembled from multiple smaller, non-overlapping subregions of other neurons in the same local population. These experiments provide the first characterization of the diversity of receptive fields in a dense local network of visual cortex, and reveal elementary units of receptive field organization. Our results suggest that a limited pool of afferent receptive fields is available to a local population of neurons, and reveal new organizational principles for the neural circuitry of the mouse visual cortex.

239 citations

Journal ArticleDOI
TL;DR: The properties of IT neurons are reviewed and it is considered how these properties may underlie the perceptual and mnemonic functions of IT cortex.
Abstract: In primates, inferior temporal (IT) cortex is crucial for the processing and storage of visual information about form and colour. This article reviews the properties of IT neurons and considers how these properties may underlie the perceptual and mnemonic functions of IT cortex. The available evidence suggests that the processing of the facial image by IT cortex is similar to its processing of other visual patterns. Faces and other complex visual stimuli appear to be represented by the pattern of responses over a population of IT neurons rather than by the responses of specific \`feature detectors' or \`grandmother' cells. IT neurons with adult-like stimulus properties are present in monkeys as young as six weeks old.

239 citations

Journal ArticleDOI
TL;DR: Neurons with somatic sensory receptive fields were examined electrophysiologically in the thalamic reticular nucleus of the cat and processes immunoreactive for glutamic acid decarboxylase and identifiable as both collateral axon terminals and presynaptic dendrites of GABAergic retic nucleus cells were revealed.
Abstract: Neurons with somatic sensory receptive fields were examined electrophysiologically in the thalamic reticular nucleus of the cat. All cells had receptive fields much larger than those of neurons in the ventral posterior nucleus and were driven by less readily defined somesthetic stimuli. Response latencies to peripheral or medial lemniscal stimulation were, on average, longer than in the ventral posterior nucleus and suggested activation of the reticular nucleus cells by collaterals of thalamocortical relay cell axons arising in the ventral posterior nucleus. When injected intracellularly with horseradish peroxidase, reticular nucleus cells displayed thin axons with intrareticular collaterals and diffuse branches through much of the ventral posterior and posterior thalamic nuclei. Dendrites ended in processes resembling synaptic terminals. Electron microscopic immunocytochemistry of the same part of the reticular nucleus revealed processes immunoreactive for glutamic acid decarboxylase and identifiable as both collateral axon terminals and presynaptic dendrites of GABAergic reticular nucleus cells. These synaptically linked reticular nucleus cells and, in addition, immunoreactive somata and presynaptic dendrites received synapses from at least three varieties of nonimmunoreactive profiles.

239 citations

Journal ArticleDOI
TL;DR: The mechanoafferent neurons innervating the tail region make strong monosynaptic connections to tail motor neurons in the ipsilateral pedal ganglion, and through these connections this subpopulation of the VC neurons appears to make a substantial contribution to the short-latency tail-withdrawal reflex.
Abstract: Mechanical, chemical, or electrical stimulation of the tail elicits a short-latency (less than 1 s) tail-withdrawal reflex that is graded with the intensity of the stimulus. The tail-withdrawal reflex is not elicited by stimulation of parts of the body outside of the tail region. Mechanoafferent neurons innervating the tail are located in a small subcluster within a large, homogeneous group of medium-size (40-80 micron) cells on the ventrocaudal (VC) surface of each pleural ganglion. The tail sensory neurons within this large VC cluster are activated by tactile pressure or by electrical stimulation of discrete regions of the tail. They adapt slowly to maintained stimulation and sometimes respond to stimulus offset as well. Both mechanical and electrical stimuli produce responses that are graded with the intensity of the stimulus. Cells in the VC cluster appear to be primary mechanoreceptors because they have axons in peripheral nerves (including nerves innervating the tail), they exhibit action potentials lacking prepotentials in response to tactile stimulation, and these action potentials are still produced by cutaneous stimulation when peripheral and central chemical synaptic transmission is blocked. Stimulation of fields all over the body surface evokes synaptically mediated hyperpolarizing responses in individual mechanoafferent neurons that may represent afferent inhibition. Hyperpolarizing responses lasting many seconds can be produced by brief cutaneous stimuli. The mechanoafferent neurons innervating the tail region make strong monosynaptic connections to tail motor neurons in the ipsilateral pedal ganglion, and through these connections this subpopulation of the VC neurons appears to make a substantial contribution to the short-latency tail-withdrawal reflex. In addition, the combined excitatory receptive fields of these mechanoafferents match the excitatory receptive field of the tail-withdrawal reflex. Mechanoafferent neurons in the VC cluster that have receptive fields on other parts of the body (outside the excitatory receptive field of the tail-withdrawal reflex) have not been observed to make monosynaptic connections to the tail motor neurons. The neurons innervating the tail are reliably found in a discrete region within the larger VC cluster. In addition to this gross somatotopic organization, there is evidence of a finer level of somatotopic organization between the position of the excitatory receptive field on the tail and the position of the cell soma in the tail subcluster.(ABSTRACT TRUNCATED AT 400 WORDS)

238 citations

Journal ArticleDOI
TL;DR: This work uses acoustic signals with a structurally rich time-varying spectrum to study linear and nonlinear spectrotemporal interactions in the central nucleus of the inferior colliculus (ICC), finding that ∼60% of ICC neurons meet this basic requirement for a linear integrating neuron.
Abstract: The auditory system of humans and animals must process information from sounds that dynamically vary along multiple stimulus dimensions, including time, frequency, and intensity. Therefore, to understand neuronal mechanisms underlying acoustic processing in the central auditory pathway, it is essential to characterize how spectral and temporal acoustic dimensions are jointly processed by the brain. We use acoustic signals with a structurally rich time-varying spectrum to study linear and nonlinear spectrotemporal interactions in the central nucleus of the inferior colliculus (ICC). Our stimuli, the dynamic moving ripple (DMR) and ripple noise (RN), allow us to systematically characterize response attributes with the spectrotemporal receptive field (STRF) methods to a rich and dynamic stimulus ensemble. Theoretically, we expect that STRFs derived with DMR and RN would be identical for a linear integrating neuron, and we find that ∼60% of ICC neurons meet this basic requirement. We find that the remaining neurons are distinctly nonlinear; these could either respond selectively to DMR or produce no STRFs despite selective activation to spectrotemporal acoustic attributes. Our findings delineate rules for spectrotemporal integration in the ICC that cannot be accounted for by conventional linear–energy integration models.

237 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
95% related
Neuron
22.5K papers, 1.3M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
87% related
Hippocampal formation
30.6K papers, 1.7M citations
86% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022310
2021168
2020157
2019176
2018193