scispace - formally typeset
Search or ask a question
Topic

Receptive field

About: Receptive field is a research topic. Over the lifetime, 8537 publications have been published within this topic receiving 596428 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The rapid development of RF plasticity satisfies a criterion for its involvement in the neural bases of a specific associative memory.
Abstract: Classical conditioning induces frequency-specific receptive field (RF) plasticity in the auditory cortex after relatively brief training (30 trials), characterized by increased response to the frequency of the conditioned stimulus (CS) and decreased responses to other frequencies, including the pretraining best frequency (BF). This experiment determined the development of this CS-specific RF plasticity. Guinea pigs underwent classical conditioning to a tonal frequency, and receptive fields of neurons in the auditory cortex were determined before and after 5, 15, and 30 CS-US (unconditioned stimulus) pairings, as well as 1 hr posttraining. Highly selective RF changes were observed as early as the first 5 training trials. They culminated after 15 trials, then stabilized after 30 trials and 1 hr posttraining. The rapid development of RF plasticity satisfies a criterion for its involvement in the neural bases of a specific associative memory.

214 citations

Journal ArticleDOI
TL;DR: There is an inverse correlation between preferred velocity and the sharpness of velocity selectivity for simple cells; no trend is apparent for other cell types; no clear correlation is observed between the velocity preferances of units and their degree of direction selectivity, or receptive field arrangement.
Abstract: 1. The activity of single units was recorded from the striate cortex (area 17) of anaesthetized, paralysed cats. Responses to stimuli moving at different velocities were examined. 2. Peak evoked firing frequency, rather than fotal evoked spikes, is used throughout as a measure of response. The former mea-ure gives curves of response vs. velocity that correlate well with curves of contrast sensitivity vs. velocity, wheras the latter does not. 3. Cortical receptive fields were classified according to the criteria of Hubel & Wiesel. Simple cells were found to prefer lower velocities (mean 2-2 deg sec-1) than complex cells (mean 18–8 deg sec-1). The response of simple cells to stimuli moving faster than 20 deg sec-1 is generally poor; complex cells usually discharge briskly to these speeds. 4. Cells classified as hypercomplex by the end-inhibition criterion were further chara-terized as type I or type II, according to the suggestion of Dreher (1972). Type I units are indistinguishable from simple cells in their velocity tuning, and type II units equally clearly resemble complex cells. These results are therefor consistent with Dreher's sbudivision. 5. Teh selectivity of cells for velocity is variable but can be quite marked. The average selectivities of simple and complex cells are not significantly different. There is an inverse correlation between preferred velocity and the sharpness of velocity selectivity for simple cells; no trend is apparent for other cell types. 6. No clear correlation is observed between the velocity preferances of units and their degree of direction selectivity, or receptive field arrangement. Simple cells with ‘sustainef’ temporal responses to flashed stimuli tend to prefer slower rates of movement than ‘transient’ ones, and to be less selective for velocity. 7. The results for different cortical cell-types are compared with the velocity tuning of X- and Y-cells in the lateral geniculate nucleus.

214 citations

Journal ArticleDOI
TL;DR: It was found that a large percentage of bimodal (visual and somatosensory) neurons have visual receptive fields that are independent of eye position, and the location of the visual receptive field does not change when the eyes move, but remains in register with the tactile receptive field.
Abstract: The visual responses of postarcuate neurons have been studied in alert behaving monkeys (Macaca nemestrina). In particular, the effect of eye position on the location of visual responses in respect to the body has been examined. It was found that a large percentage of bimodal (visual and somatosensory) neurons have visual receptive fields that are independent of eye position. The location of the visual receptive field does not change when the eyes move, but remains in register with the tactile receptive field (soma-related visually responsive neurons).

213 citations

Journal ArticleDOI
TL;DR: It is suggested that the center-surround receptive fields of the major primate ganglion cell types are established at the bipolar cell, probably by the circuitry of the outer retina.

212 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
95% related
Neuron
22.5K papers, 1.3M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
87% related
Hippocampal formation
30.6K papers, 1.7M citations
86% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022310
2021168
2020157
2019176
2018193