scispace - formally typeset
Search or ask a question
Topic

Receptive field

About: Receptive field is a research topic. Over the lifetime, 8537 publications have been published within this topic receiving 596428 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Fly motion vision and resultant compensatory optomotor responses are a classic example for neural computation and current understanding of processing of optic flow as generated by an animal's self-motion is reviewed.
Abstract: Fly motion vision and resultant compensatory optomotor responses are a classic example for neural computation. Here we review our current understanding of processing of optic flow as generated by an animal's self-motion. Optic flow processing is accomplished in a series of steps: First, the time-varying photoreceptor signals are fed into a two-dimensional array of Reichardt-type elementary motion detectors (EMDs). EMDs compute, in parallel, local motion vectors at each sampling point in space. Second, the output signals of many EMDs are spatially integrated on the dendrites of large-field tangential cells in the lobula plate. In the third step, tangential cells form extensive interactions with each other, giving rise to their large and complex receptive fields. Thus, tangential cells can act as matched filters tuned to optic flow during particular flight maneuvers. They finally distribute their information onto postsynaptic descending neurons, which either instruct the motor centers of the thoracic ganglion for flight and locomotion control or act themselves as motor neurons that control neck muscles for head movements.

333 citations

Journal ArticleDOI
TL;DR: Glass micropipettes were used to record the activity of 124 single units in the somatosensory vibrissa cortex of 16 rats in response to combined deflections of contralateral vibrissae, finding that response suppression is strongest at short interdeflection intervals and decreases progressively during the 50-100 ms following the first deflection.
Abstract: Glass micropipettes were used to record the activity of 124 single units in the somatosensory vibrissa cortex (SI) of 16 rats in response to combined deflections of contralateral vibrissae. Compact multiangular electromechanical stimulators were used to stimulate individual vibrissal hairs alone or in combinations of two or three adjacent whiskers. Each whisker was stimulated independently to produce controlled temporal and spatial patterns of mechanical stimuli. Following displacement of a vibrissa, unit discharges to subsequent deflections of adjacent whiskers are reduced in a time-dependent fashion. Response suppression is strongest at short interdeflection intervals, i.e., 10-20 ms and decreases progressively during the 50-100 ms following the first deflection. In many cases this period also corresponds with a reduction in ongoing unit discharges. Response suppression was not observed for first-order neurons recorded in the trigeminal ganglion of barbiturate-anesthetized rats. In the cortex, the presence and/or degree of response suppression depends on a number of spatial factors. These include 1) the angular direction(s) in which the individual hairs are moved, 2) the sequence in which two whiskers are deflected, that is, which one is deflected first, 3) the particular combination of whiskers stimulated, and 4) the number (2 or 3) of vibrissae comprising the multiwhisker stimulus. Within a vertical electrode penetration, one particular whisker typically elicits the strongest excitatory and inhibitory effects; other, nearby vibrissae elicit variable (or no) excitation or inhibition. Excitatory and inhibitory subregions of a receptive field could thus be distributed asymmetrically around the maximally effective whisker. In these cases, the receptive fields displayed spatial orientations. Quantitative criteria were used to classify 30 cortical units on the basis of the distribution of inhibitory subregions on either side of the maximally effective whisker. Twenty-one of these cells had receptive fields (RFs) with symmetrical inhibitory side regions. Responses of the other nine units were strongly suppressed by a preceding deflection of a vibrissa on one side but relatively unaffected, or even slightly facilitated, by preceding deflection of the whisker on the other side.(ABSTRACT TRUNCATED AT 400 WORDS)

333 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ongoing time disparity (OTD) was a sufficient cue for the azimuthal component of receptive fields of auditory neurons in the owl (Tyto alba) midbrain and that OTDs were sufficient to mediate meaningful behavioral responses and confirmed the behavioral relevance of OTD as a cue for localizing a sound in azimut.
Abstract: We demonstrated that ongoing time disparity (OTD) was a sufficient cue for the azimuthal component of receptive fields of auditory neurons in the owl (Tyto alba) midbrain and that OTDs were sufficient to mediate meaningful behavioral responses. We devised a technique which enabled us to change easily between free field and dichotic stimuli while recording from single auditory neurons in the owl mesencephalicus lateralis pars dorsalis (MLD). MLD neurons with restricted spatial receptive fields (“space-mapped neurons”) showed marked sensitivity to specific ongoing time disparities. The magnitudes of these disparities were in the behaviorally significant range of tens of microseconds. The ongoing time disparities were correlated significantly with the azimuthal center of receptor fields. Space-mapped neurons were insensitive to transient disparities. MLD neurons which were not space- mapped, i.e., were omnidirectional, did not show any sensitivity to specific OTDs. We confirmed the behavioral relevance of OTD as a cue for localizing a sound in azimuth by presenting OTD differences to tame owls. Using head turning as an assay, we showed that OTD was a sufficient cue for the azimuth of a sound. The relationship between azimuth and OTD obtained from our neurophysiological experiments matched closely the relationship obtained from our behavioral experiments.

332 citations

Journal ArticleDOI
TL;DR: A model of invariant visual object recognition in the brain that incorporates feedback biasing effects of top-down attentional mechanisms on a hierarchically organized set of visual cortical areas with convergent forward connectivity, reciprocal feedback connections, and local intra-area competition is described.

331 citations

Journal ArticleDOI
TL;DR: A large difference in predictive power suggests that natural spatiotemporal stimulus statistics activate nonlinear response properties in a different manner than the grating stimulus, which contributes to the modulatory effects of nonlinear temporal summation during natural vision.
Abstract: Studies of the primary visual cortex (V1) have produced models that account for neuronal responses to synthetic stimuli such as sinusoidal gratings. Little is known about how these models generalize to activity during natural vision. We recorded neural responses in area V1 of awake macaques to a stimulus with natural spatiotemporal statistics and to a dynamic grating sequence stimulus. We fit nonlinear receptive field models using each of these data sets and compared how well they predicted time-varying responses to a novel natural visual stimulus. On average, the model fit using the natural stimulus predicted natural visual responses more than twice as accurately as the model fit to the synthetic stimulus. The natural vision model produced better predictions in >75% of the neurons studied. This large difference in predictive power suggests that natural spatiotemporal stimulus statistics activate nonlinear response properties in a different manner than the grating stimulus. To characterize this modulation, we compared the temporal and spatial response properties of the model fits. During natural stimulation, temporal responses often showed a stronger late inhibitory component, indicating an effect of nonlinear temporal summation during natural vision. In addition, spatial tuning underwent complex shifts, primarily in the inhibitory, rather than excitatory, elements of the response profile. These differences in late and spatially tuned inhibition accounted fully for the difference in predictive power between the two models. Both the spatial and temporal statistics of the natural stimulus contributed to the modulatory effects.

330 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
95% related
Neuron
22.5K papers, 1.3M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
87% related
Hippocampal formation
30.6K papers, 1.7M citations
86% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022310
2021168
2020157
2019176
2018193