scispace - formally typeset
Search or ask a question
Topic

Receptive field

About: Receptive field is a research topic. Over the lifetime, 8537 publications have been published within this topic receiving 596428 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that different functions are represented in different degrees in different parts of area 7, and one important determinant of the results obtained by various research groups is the area of recording within area 7.

310 citations

Journal ArticleDOI
TL;DR: FMRI at high field found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1, which helps elucidate the role of top-down signals during perceptual processing.

310 citations

Journal ArticleDOI
07 Jun 2001-Nature
TL;DR: It is found that more than 90% of the information about the stimuli can be obtained from the cells when their correlated firing is ignored, which indicates that ganglion cells act largely independently to encode information, which greatly simplifies the problem of decoding their activity.
Abstract: Correlated firing among neurons is widespread in the visual system. Neighbouring neurons, in areas from retina to cortex, tend to fire together more often than would be expected by chance. The importance of this correlated firing for encoding visual information is unclear and controversial1,2,3,4,5. Here we examine its importance in the retina. We present the retina with natural stimuli and record the responses of its output cells, the ganglion cells. We then use information theoretic techniques to measure the amount of information about the stimuli that can be obtained from the cells under two conditions: when their correlated firing is taken into account, and when their correlated firing is ignored. We find that more than 90% of the information about the stimuli can be obtained from the cells when their correlated firing is ignored. This indicates that ganglion cells act largely independently to encode information, which greatly simplifies the problem of decoding their activity.

309 citations

Posted Content
TL;DR: Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input.
Abstract: In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at this https URL.

309 citations

Journal ArticleDOI
TL;DR: Findings indicate that a brief change in the pattern of sensory activity can alter the configuration of cortical RFs, even in adult animals.
Abstract: This study tested the hypothesis that the receptive fields (RFs) of neurons in the adult sensory cortex are shaped by the recent history of sensory experience. Sensory experience was altered by a brief period of "whisker pairing": whiskers D2 and either D1 or D3 were left intact, while all other whiskers on the right side of the face were trimmed close to the fur. The animals were anesthetized 64-66 h later and the responses of single neurons in contralateral cortical barrel D2 to stimulation of whisker D2 (the center RF) and the four neighboring whiskers (D1, D3, C2, and E2; the excitatory surround RF) were measured. Data from 79 cells in four rats with whiskers paired were compared to data from 52 cells in four rats with untrimmed whiskers (control cases). During the period of whisker pairing, the RFs of cells in barrel D2 changed in three ways: (i) the response to the center RF, whisker D2, increased by 39%, (ii) the response to the paired surround RF whisker increased by 85-100%, and (iii) the response to all clipped (unpaired) surround RF whiskers decreased by 9-42%. In the control condition, the response of barrel D2 cells to the two neighboring whiskers, D1 and D3, was equal. After whisker pairing, the response to the paired neighbor of D2 was more than twice as large as the response to the cut neighbor of D2. These findings indicate that a brief change in the pattern of sensory activity can alter the configuration of cortical RFs, even in adult animals.

308 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
95% related
Neuron
22.5K papers, 1.3M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
87% related
Hippocampal formation
30.6K papers, 1.7M citations
86% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022310
2021168
2020157
2019176
2018193