scispace - formally typeset
Search or ask a question
Topic

Receptive field

About: Receptive field is a research topic. Over the lifetime, 8537 publications have been published within this topic receiving 596428 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A highly parsimonious model is obtained of how the properties of the visual cortex are adapted to the characteristics of the natural input by maximizing the sparseness of locally pooled energies.

284 citations

Journal ArticleDOI
TL;DR: This paper shows that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation, and proposes a network model based on neurons with these properties that learns time-based sequences.
Abstract: Neocortical neurons have thousands of excitatory synapses. It is a mystery how neurons integrate the input from so many synapses and what kind of large-scale network behavior this enables. It has been previously proposed that non-linear properties of dendrites enable neurons to recognize multiple patterns. In this paper we extend this idea by showing that a neuron with several thousand synapses arranged along active dendrites can learn to accurately and robustly recognize hundreds of unique patterns of cellular activity, even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where some of the patterns recognized by a neuron lead to action potentials and define the classic receptive field of the neuron, whereas the majority of the patterns recognized by a neuron act as predictions by slightly depolarizing the neuron without immediately generating an action potential. We then present a network model based on neurons with these properties and show that the network learns a robust model of time-based sequences. Given the similarity of excitatory neurons throughout the neocortex and the importance of sequence memory in inference and behavior, we propose that this form of sequence memory is a universal property of neocortical tissue. We further propose that cellular layers in the neocortex implement variations of the same sequence memory algorithm to achieve different aspects of inference and behavior. The neuron and network models we introduce are robust over a wide range of parameters as long as the network uses a sparse distributed code of cellular activations. The sequence capacity of the network scales linearly with the number of synapses on each neuron. Thus neurons need thousands of synapses to learn the many temporal patterns in sensory stimuli and motor sequences.

284 citations

Journal ArticleDOI
TL;DR: The first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake, fixating monkeys suggest that TE neurons can code for the position of stimuli in the central region of the visual field.
Abstract: Recent findings in dorsal visual stream areas and computational work raise the question whether neurons at the end station of the ventral visual stream can code for stimulus position. The authors provide the first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake, fixating monkeys. They observed a large variation in receptive field (RF) size (ranging from 2.8 degrees to 26 degrees ). TE neurons differed in their optimal position, with a bias toward the foveal position. Moreover, the RF profiles of most TE neurons could be fitted well with a two-dimensional Gaussian function. Most neurons had only one region of high sensitivity and showed a smooth decline in sensitivity toward more distal positions. In addition, the authors investigated some of the possible determinants of such spatial sensitivity. First, testing with low-pass filtered versions of the stimuli revealed that the general preference for the foveal position and the size of the RFs was not due simply to TE neurons receiving input with a lower spatial resolution at more eccentric positions. The foveal position was still preferred after intense low-pass filtering. Second, although an increase in stimulus size consistently broadened spatial sensitivity profiles, it did not change the qualitative features of these profiles. Moreover, size selectivity of TE neurons was generally position invariant. Overall, the results suggest that TE neurons can code for the position of stimuli in the central region of the visual field.

283 citations

Journal ArticleDOI
TL;DR: Red–green (or red–cyan) cells, along with blue–yellow and black–white cells, establish three chromatic axes that are sufficient to describe all of color space.
Abstract: The spatial structure of color cell receptive fields is controversial. Here, spots of light that selectively modulate one class of cones (L, M, or S, or loosely red, green, or blue) were flashed in and around the receptive fields of V-1 color cells to map the spatial structure of the cone inputs. The maps generated using these cone-isolating stimuli and an eye-position-corrected reverse correlation technique produced four findings. First, the receptive fields were Double-Opponent, an organization of spatial and chromatic opponency critical for color constancy and color contrast. Optimally stimulating both center and surround subregions with adjacent red and green spots excited the cells more than stimulating a single subregion. Second, red–green cells responded in a luminance-invariant way. For example, red-on-center cells were excited equally by a stimulus that increased L-cone activity (appearing bright red) and by a stimulus that decreased M-cone activity (appearing dark red). This implies that the opponency between L and M is balanced and argues that these cells are encoding a single chromatic axis. Third, most color cells responded to stimuli of all orientations and had circularly symmetric receptive fields. Some cells, however, showed a coarse orientation preference. This was reflected in the receptive fields as oriented Double-Opponent subregions. Fourth, red–green cells often responded to S-cone stimuli. Responses to M- and S-cone stimuli usually aligned, suggesting that these cells might be red–cyan. In summary, red–green (or red–cyan) cells, along with blue–yellow and black–white cells, establish three chromatic axes that are sufficient to describe all of color space.

283 citations

Journal ArticleDOI
TL;DR: Receptive field centre sizes of brisk‐sustained (X) and brisk‐transient (Y) ganglion cells of the cat retina were assessed by three different methods: small spot mapping, area threshold method and spatial resolution.
Abstract: 1. Receptive field centre sizes of brisk-sustained (X) and brisk-transient (Y) ganglion cells of the cat retina were assessed by three different methods: small spot mapping, area threshold method and spatial resolution. 2. Centre sizes of brisk-sustained (X) cells increased from 20' in the central area to about 70' at an eccentricity of 4.5 mm, centre sizes of brisk-transient (Y) cells from 50' in the central area to about 140' at 5 mm eccentricity. 3. The scatter of centre sizes at one retinal location was measured by recording as many ganglion cells as possible in one cat in a small field of retina. The centre sizes of the individual classes were homogeneous and exhibited only a small amount of scatter. 4. The coverage of the retina by the different ganglion cell classes was assessed from their density and their receptive field centre area. At every retinal location the receptive field centres of seven to twenty brisk-sustained (X) cells and of three to six brisk-transient (Y) cells were found to overlap. Sluggish concentric and non-concentric cells taken together have a coverage factor of about 60.

283 citations


Network Information
Related Topics (5)
Visual cortex
18.8K papers, 1.2M citations
95% related
Neuron
22.5K papers, 1.3M citations
91% related
Synaptic plasticity
19.3K papers, 1.3M citations
87% related
Hippocampal formation
30.6K papers, 1.7M citations
86% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022310
2021168
2020157
2019176
2018193