scispace - formally typeset
Search or ask a question

Showing papers on "Receptor published in 2002"


Journal ArticleDOI
TL;DR: P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP and are involved in the initiation of afferent signals in several viscera and play a key role in sensing tissue-damaging and inflammatory stimuli.
Abstract: P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40–50% identical in amino acid ...

2,800 citations


Journal ArticleDOI
TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Abstract: Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.

2,619 citations


Journal ArticleDOI
TL;DR: This paper showed that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain seven-transmembrane receptors' remarkably diverse biological actions.
Abstract: Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.

2,300 citations


Journal ArticleDOI
TL;DR: In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways and manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
Abstract: In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.

1,737 citations


Journal ArticleDOI
TL;DR: This work has engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties and effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors.
Abstract: Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

1,700 citations


Journal ArticleDOI
12 Apr 2002-Science
TL;DR: It is shown that lymphocyte trafficking is altered by the lysophospholipid sphingosine-1-phosphate (S1P) and by a phosphoryl metabolites of the immunosuppressive agent FTY720.
Abstract: Blood lymphocyte numbers, essential for the development of efficient immune responses, are maintained by recirculation through secondary lymphoid organs. We show that lymphocyte trafficking is altered by the lysophospholipid sphingosine-1-phosphate (S1P) and by a phosphoryl metabolite of the immunosuppressive agent FTY720. Both species were high-affinity agonists of at least four of the five S1P receptors. These agonists produce lymphopenia in blood and thoracic duct lymph by sequestration of lymphocytes in lymph nodes, but not spleen. S1P receptor agonists induced emptying of lymphoid sinuses by retention of lymphocytes on the abluminal side of sinus-lining endothelium and inhibition of egress into lymph. Inhibition of lymphocyte recirculation by activation of S1P receptors may result in therapeutically useful immunosuppression.

1,641 citations


Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of the most important GC-mediated side effects from a clinical to a molecular perspective and should be helpful in predicting the potential advantages of selective GR agonists in comparison to classical GCs.

1,624 citations


Journal ArticleDOI
TL;DR: It is reported that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival.
Abstract: Here we report that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival. Calcium entry through synaptic NMDA receptors induced CREB activity and brain-derived neurotrophic factor (BDNF) gene expression as strongly as did stimulation of L-type calcium channels. In contrast, calcium entry through extrasynaptic NMDA receptors, triggered by bath glutamate exposure or hypoxic/ischemic conditions, activated a general and dominant CREB shut-off pathway that blocked induction of BDNF expression. Synaptic NMDA receptors have anti-apoptotic activity, whereas stimulation of extrasynaptic NMDA receptors caused loss of mitochondrial membrane potential (an early marker for glutamate-induced neuronal damage) and cell death. Specific blockade of extrasynaptic NMDA receptors may effectively prevent neuron loss following stroke and other neuropathological conditions associated with glutamate toxicity.

1,590 citations


Journal ArticleDOI
TL;DR: It is demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca2+ flux, activate NF-κB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes.

1,528 citations


Journal ArticleDOI
01 Feb 2002-Immunity
TL;DR: A number of genes that antagonize signaling, including members of the SOCS family, may contribute to their anergic phenotype and GITR abrogated suppression, demonstrating a functional role for this receptor in regulating the CD4(+)CD25(+) T cell subset.

1,421 citations


Journal ArticleDOI
TL;DR: The data suggest that ghrelin might have widespread physiological effects via different, partly unidentified, subtypes of the GHS-R in endocrine and non-endocrine tissues.
Abstract: Ghrelin is a novel growth hormone-releasing peptide, originally identified in the rat stomach as the endogenous ligand for the growth hormone secretagogue-receptor (GHS-R1a) Ghrelin is involved in the regulation of GH release, but it has recently been suggested that ghrelin may have other actions, including effects on appetite, carbohydrate metabolism, heart, kidney, pancreas, gonads, and cell proliferation The distribution of ghrelin, its functional receptor (type 1a) and the unspliced, non-functional GHS-R type 1b mRNA expression was investigated in various human tissues using classical and real-time reverse transcription and polymerase chain reaction GHS-R1a was predominantly expressed in the pituitary and at much lower levels in the thyroid gland, pancreas, spleen, myocardium and adrenal gland In contrast, ghrelin was found in the stomach, other parts of the gut and, indeed, in all the tissues studied (adrenal gland, atrium, breast, buccal mucosa, esophagus, Fallopian tube, fat tissue, gall bladde

Journal ArticleDOI
TL;DR: This paper showed that TLR1-deficient mice showed impaired proinflammatory cytokine production in response to 19-kDa lipoprotein and a synthetic triacylated lipopeptide.
Abstract: The Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns (PAMPs). TLR2 is essential for the signaling of a variety of PAMPs, including bacterial lipoprotein/lipopeptides, peptidoglycan, and GPI anchors. TLR6 associates with TLR2 and recognizes diacylated mycoplasmal lipopeptide along with TLR2. We report here that TLR1 associates with TLR2 and recognizes the native mycobacterial 19-kDa lipoprotein along with TLR2. Macrophages from TLR1-deficient (TLR1(-/-)) mice showed impaired proinflammatory cytokine production in response to the 19-kDa lipoprotein and a synthetic triacylated lipopeptide. In contrast, TLR1(-/-) cells responded normally to diacylated lipopeptide. TLR1 interacts with TLR2 and coexpression of TLR1 and TLR2 enhanced the NF-kappaB activation in response to a synthetic lipopeptide. Furthermore, lipoprotein analogs whose acylation was modified were preferentially recognized by TLR1. Taken together, TLR1 interacts with TLR2 to recognize the lipid configuration of the native mycobacterial lipoprotein as well as several triacylated lipopeptides.

Journal ArticleDOI
Avi Ashkenazi1
TL;DR: Cancer cells often develop resistance to chemotherapy or irradiation through mutations in the p53 tumour-suppressor gene, which prevent apoptosis induction in response to cellular damage, so agents that are designed to activate death receptors or block decoy receptors might be used to kill tumour cells that are resistant to conventional cancer therapies.
Abstract: Cancer cells often develop resistance to chemotherapy or irradiation through mutations in the p53 tumour-suppressor gene, which prevent apoptosis induction in response to cellular damage. Death receptors — members of the tumour-necrosis factor receptor (TNFR) superfamily — signal apoptosis independently of p53. Decoy receptors, by contrast, are a non-signalling subset of the TNFR superfamily that attenuate death-receptor function. Agents that are designed to activate death receptors (or block decoy receptors) might therefore be used to kill tumour cells that are resistant to conventional cancer therapies.

Journal ArticleDOI
TL;DR: This is the first report that polysaccharide degradation products of the extracellular matrix produced during inflammation might serve as an endogenous ligand for the TLR-4 complex on DCs.
Abstract: Low molecular weight fragmentation products of the polysaccharide of Hyaluronic acid (sHA) produced during inflammation have been shown to be potent activators of immunocompetent cells such as dendritic cells (DCs) and macrophages. Here we report that sHA induces maturation of DCs via the Toll-like receptor (TLR)-4, a receptor complex associated with innate immunity and host defense against bacterial infection. Bone marrow–derived DCs from C3H/HeJ and C57BL/10ScCr mice carrying mutant TLR-4 alleles were nonresponsive to sHA-induced phenotypic and functional maturation. Conversely, DCs from TLR-2–deficient mice were still susceptible to sHA. In accordance, addition of an anti–TLR-4 mAb to human monocyte–derived DCs blocked sHA-induced tumor necrosis factor α production. Western blot analysis revealed that sHA treatment resulted in distinct phosphorylation of p38/p42/44 MAP-kinases and nuclear translocation of nuclear factor (NF)-κB, all components of the TLR-4 signaling pathway. Blockade of this pathway by specific inhibitors completely abrogated the sHA-induced DC maturation. Finally, intravenous injection of sHA-induced DC emigration from the skin and their phenotypic and functional maturation in the spleen, again depending on the expression of TLR-4. In conclusion, this is the first report that polysaccharide degradation products of the extracellular matrix produced during inflammation might serve as an endogenous ligand for the TLR-4 complex on DCs.

Journal ArticleDOI
TL;DR: The expression cloning of the human renin receptor complementary DNA encoding a 350-amino acid protein with a single transmembrane domain and no homology with any known membrane protein is reported, the first described for an aspartyl protease.
Abstract: Renin is an aspartyl protease essential for the control of blood pressure and was long suspected to have cellular receptors We report the expression cloning of the human renin receptor complementary DNA encoding a 350-amino acid protein with a single transmembrane domain and no homology with any known membrane protein Transfected cells stably expressing the receptor showed renin- and prorenin-specific binding The binding of renin induced a fourfold increase of the catalytic efficiency of angiotensinogen conversion to angiotensin I and induced an intracellular signal with phosphorylation of serine and tyrosine residues associated to an activation of MAP kinases ERK1 and ERK2 High levels of the receptor mRNA are detected in the heart, brain, placenta, and lower levels in the kidney and liver By confocal microscopy the receptor is localized in the mesangium of glomeruli and in the subendothelium of coronary and kidney artery, associated to smooth muscle cells and colocalized with renin The renin receptor is the first described for an aspartyl protease This discovery emphasizes the role of the cell surface in angiotensin II generation and opens new perspectives on the tissue renin-angiotensin system and on renin effects independent of angiotensin II

Journal ArticleDOI
TL;DR: Analysis of TLR expression in fractionated primary human leukocytes indicates that professional phagocytes express the greatest variety ofTLR mRNAs although several TLRs appear more restricted to B cells, suggesting additional roles for TLRs in adaptive immunity.
Abstract: Members of the Toll-like receptor (TLR) family mediate dorsoventral patterning and cellular adhesion in insects as well as immune responses to microbial products in both insects and mammals. TLRs are characterized by extracellular leucine-rich repeat domains and an intracellular signaling domain that shares homology with cytoplasmic sequences of the mammalian IL-1 receptor and plant disease resistance genes. Ten human TLRs have been cloned as well as RP105, a protein similar to TLR4 but lacking the intracellular signaling domain. However, only five TLRs have described functions as receptors for bacterial products (e.g., LPS, lipoproteins). To identify potential sites of action, we used quantitative real-time RT-PCR to examine systematically the expression of mRNAs encoding all known human TLRs, RP105, and several other proteins important in TLR functions (e.g., MD-1, MD-2, CD14, MyD88). Most tissues tested expressed at least one TLR, and several expressed all (spleen, peripheral blood leukocytes). Analysis of TLR expression in fractionated primary human leukocytes (CD4(+), CD8(+), CD19(+), monocytes, and granulocytes) indicates that professional phagocytes express the greatest variety of TLR mRNAs although several TLRs appear more restricted to B cells, suggesting additional roles for TLRs in adaptive immunity. Monocyte-like THP-1 cells regulate TLR mRNA levels in response to a variety of stimuli including phorbol esters, LPS, bacterial lipoproteins, live bacteria, and cytokines. Furthermore, addition of Escherichia coli to human blood ex vivo caused distinct changes in TLR expression, suggesting that important roles exist for these receptors in the establishment and resolution of infections and inflammation.

Journal ArticleDOI
TL;DR: It is discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81, and the receptor responsible for E2 binding to human hepatic cells is identified as the human scavenger receptor class B type I (SR‐BI).
Abstract: We discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81. Comparative binding studies using recombinant E2 from the most prevalent 1a and 1b genotypes revealed that E2 recognition by hepatoma cells is independent from the viral isolate, while E2–CD81 interaction is isolate specific. Binding of soluble E2 to human hepatoma cells was impaired by deletion of the hypervariable region 1 (HVR1), but the wild-type phenotype was recovered by introducing a compensatory mutation reported previously to rescue infectivity of an HVR1-deleted HCV infectious clone. We have identified the receptor responsible for E2 binding to human hepatic cells as the human scavenger receptor class B type I (SR-BI). E2–SR-BI interaction is very selective since neither mouse SR-BI nor the closely related human scavenger receptor CD36, were able to bind E2. Finally, E2 recognition by SR-BI was competed out in an isolate-specific manner both on the hepatoma cell line and on the human SR-BI-transfected cell line by an anti-HVR1 monoclonal antibody.

Journal ArticleDOI
27 Dec 2002-Cell
TL;DR: Antigen presenting cells (macrophages and dendritic cells) express pattern recognition molecules that are thought to recognize foreign ligands during early phases of the immune response, suggesting that they play a dual role in normal tissue function and host defense.

Journal ArticleDOI
17 May 2002-Science
TL;DR: Mouse cytomegalovirus encodes an MHC-like protein that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice, and this viral protein engages a related activating receptor and confers host protection.
Abstract: Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen

Journal ArticleDOI
TL;DR: The urokinase receptor uPAR was originally thought to assist the directional invasion of migrating cells, but it is now becoming increasingly evident that this proteinase receptor elicits a plethora of cellular responses that include cellular adhesion, differentiation, proliferation and migration in a non-proteolytic fashion.
Abstract: The plasminogen system has been implicated in clot lysis, wound healing, tissue regeneration, cancer and many other processes that affect health and disease. The urokinase receptor uPAR was originally thought to assist the directional invasion of migrating cells, but it is now becoming increasingly evident that this proteinase receptor elicits a plethora of cellular responses that include cellular adhesion, differentiation, proliferation and migration in a non-proteolytic fashion.

Journal ArticleDOI
31 May 2002-Science
TL;DR: The heterotrimeric guanine nucleotide–binding proteins (G proteins) are signal transducers that communicate signals from many hormones, neurotransmitters, chemokines, and autocrine and paracrine factors, which regulate systemic functions such as embryonic development, gonadal development, learning and memory, and organismal homeostasis.
Abstract: The heterotrimeric guanine nucleotide-binding proteins (G proteins) are signal transducers that communicate signals from many hormones, neurotransmitters, chemokines, and autocrine and paracrine factors. The extracellular signals are received by members of a large superfamily of receptors with seven membrane-spanning regions that activate the G proteins, which route the signals to several distinct intracellular signaling pathways. These pathways interact with one another to form a network that regulates metabolic enzymes, ion channels, transporters, and other components of the cellular machinery controlling a broad range of cellular processes, including transcription, motility, contractility, and secretion. These cellular processes in turn regulate systemic functions such as embryonic development, gonadal development, learning and memory, and organismal homeostasis.

Journal ArticleDOI
20 Feb 2002-Gene
TL;DR: Significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins, and the solution of the crystal structure of two STATs has and will continue to facilitate the understanding of how STATs function.

Journal ArticleDOI
17 May 2002-Science
TL;DR: Activation of VDR by LCA or vitamin D induced expression in vivo of CYP3A, a cytochrome P450 enzyme that detoxifies LCA in the liver and intestine offers a mechanism that may explain the proposed protective effects of vitamin D and its receptor against colon cancer.
Abstract: The vitamin D receptor (VDR) mediates the effects of the calcemic hormone 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We show that VDR also functions as a receptor for the secondary bile acid lithocholic acid (LCA), which is hepatotoxic and a potential enteric carcinogen. VDR is an order of magnitude more sensitive to LCA and its metabolites than are other nuclear receptors. Activation of VDR by LCA or vitamin D induced expression in vivo of CYP3A, a cytochrome P450 enzyme that detoxifies LCA in the liver and intestine. These studies offer a mechanism that may explain the proposed protective effects of vitamin D and its receptor against colon cancer.


Journal ArticleDOI
TL;DR: It is found that in MD-2−/− embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR3 was distributed at the leading edge surface of cells in wild-type embryonic fibrablasts andMD-2 is essential for correct intracellular distribution and LPS-recognition ofTLR4.
Abstract: Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2(-/-) mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2(-/-) embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.

Journal ArticleDOI
TL;DR: The model provides insight into signal–response relationships between the binding of EGF to its receptor at the cell surface and the activation of downstream proteins in the signaling cascade, showing that EGF-induced responses are remarkably stable over a 100-fold range of ligand concentration.
Abstract: We present a computational model that offers an integrated quantitative, dynamic, and topological representation of intracellular signal networks, based on known components of epidermal growth factor (EGF) receptor signal pathways. The model provides insight into signal‐response relationships between the binding of EGF to its receptor at the cell surface and the activation of downstream proteins in the signaling cascade. It shows that EGF-induced responses are remarkably stable over a 100-fold range of ligand concentration and that the critical parameter in determining signal efficacy is the initial velocity of receptor activation. The predictions of the model agree well with experimental analysis of the effect of EGF on two downstream responses, phosphorylation of ERK-1/2 and expression of the target gene, c-fos.

Journal ArticleDOI
TL;DR: The complexity of the leptin axis indicates that it is unlikely that effective treatments for obesity will be simply derived, but improving knowledge and understanding of these complex interactions may point the way to the underlying physiology which predisposes some individuals to apparently unregulated weight gain.
Abstract: Following the discovery of leptin in 1994, the scientific and clinical communities have held great hope that manipulation of the leptin axis may lead to the successful treatment of obesity. This hope is not yet dashed; however the role of the leptin axis is now being shown to be ever more complex than was first envisaged. It is now well established that leptin interacts with pathways in the central nervous system and through direct peripheral mechanisms. In this review, we consider the tissues in which leptin is synthesized and the mechanisms which mediate leptin synthesis, the structure of leptin and the knowledge gained from cloning leptin genes in aiding our understanding of the role of leptin in the periphery. The discoveries of expression of leptin receptor isotypes in a wide range of tissues in the body have encouraged investigation of leptin interactions in the periphery. Many of these interactions appear to be direct, however many are also centrally mediated. Discovery of the relative importance of the centrally mediated and peripheral interactions of leptin under different physiological states and the variations between species is beginning to show the complexity of the leptin axis. Leptin appears to have a range of roles as a growth factor in a range of cell types: as be a mediator of energy expenditure; as a permissive factor for puberty; as a signal of metabolic status and modulation between the foetus and the maternal metabolism; and perhaps importantly in all of these interactions, to also interact with other hormonal mediators and regulators of energy status and metabolism such as insulin, glucagon, the insulin-like growth factors, growth hormone and glucocorticoids. Surely, more interactions are yet to be discovered. Leptin appears to act as an endocrine and a paracrine factor and perhaps also as an autocrine factor. Although the complexity of the leptin axis indicates that it is unlikely that effective treatments for obesity will be simply derived, our improving knowledge and understanding of these complex interactions may point the way to the underlying physiology which predisposes some individuals to apparently unregulated weight gain.

Journal ArticleDOI
TL;DR: It is demonstrated that SAG, a chlorobenzothiophene-containing Hh pathway agonist, binds to the Smo heptahelical bundle in a manner that antagonizes cyclopamine action, and four small molecules that directly inhibit Smo activity but are structurally distinct fromcyclopamine are identified.
Abstract: Smoothened (Smo), a distant relative of G protein-coupled receptors, mediates Hedgehog (Hh) signaling during embryonic development and can initiate or transmit ligand-independent pathway activation in tumorigenesis. Although the cellular mechanisms that regulate Smo function remain unclear, the direct inhibition of Smo by cyclopamine, a plant-derived steroidal alkaloid, suggests that endogenous small molecules may be involved. Here we demonstrate that SAG, a chlorobenzothiophene-containing Hh pathway agonist, binds to the Smo heptahelical bundle in a manner that antagonizes cyclopamine action. In addition, we have identified four small molecules that directly inhibit Smo activity but are structurally distinct from cyclopamine. Functional and biochemical studies of these compounds provide evidence for the small molecule modulation of Smo through multiple mechanisms and yield insights into the physiological regulation of Smo activity. The mechanistic differences between the Smo antagonists may be useful in the therapeutic manipulation of Hh signaling.

Journal ArticleDOI
TL;DR: The OX26 monoclonal antibody against the rat transferrin receptor offers great promise in the delivery of therapeutic agents across the blood-brain barrier to the brain and serves as a potential alternative to viral vector for gene therapy.
Abstract: The membrane transferrin receptor-mediated endocytosis or internalization of the complex of transferrin bound iron and the transferrin receptor is the major route of cellular iron uptake. This efficient cellular uptake pathway has been exploited for the site-specific delivery not only of anticancer drugs and proteins, but also of therapeutic genes into proliferating malignant cells that overexpress the transferrin receptors. This is achieved either chemically by conjugation of transferrin with therapeutic drugs, proteins, or genetically by infusion of therapeutic peptides or proteins into the structure of transferrin. The resulting conjugates significantly improve the cytotoxicity and selectivity of the drugs. The coupling of DNA to transferrin via a polycation or liposome serves as a potential alternative to viral vector for gene therapy. Moreover, the OX26 monoclonal antibody against the rat transferrin receptor offers great promise in the delivery of therapeutic agents across the blood-brain barrier to the brain.

Journal ArticleDOI
TL;DR: The study of murine cardiac cells derived from hyaluronan synthase 2 (HAS2) knockout mice has provided the most convincing evidence for a signaling capability of hyAluronan, and results suggest that hy aluronan signals through Ras to regulate motility are consistent with previous studies showing that exogenous hyaltonanreceptor interactions regulate Ras signaling.