scispace - formally typeset
Search or ask a question

Showing papers on "Receptor published in 2009"


Journal ArticleDOI
TL;DR: It is shown that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM, providing an “alternative self” mechanism for MHC class I inhibition.
Abstract: NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an “alternative self” mechanism for MHC class I inhibition.

3,538 citations


Journal ArticleDOI
TL;DR: The role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells is focused on.
Abstract: In multicellular organisms, communication between cells mainly involves the secretion of proteins that then bind to receptors on neighbouring cells But another mode of intercellular communication - the release of membrane vesicles - has recently become the subject of increasing interest Membrane vesicles are complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components derived from the cytosol of the donor cell These vesicles have been shown to affect the physiology of neighbouring recipient cells in various ways, from inducing intracellular signalling following binding to receptors to conferring new properties after the acquisition of new receptors, enzymes or even genetic material from the vesicles This Review focuses on the role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells

3,441 citations


Journal ArticleDOI
TL;DR: Much progress has been made in the past two years revealing new insights into the regulation and functions of NF-kappaB, and this recent progress is covered in this review.
Abstract: The mammalian Rel/NF-κB family of transcription factors, including RelA, c-Rel, RelB, NF-κB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100), plays a central role in the immune system by regulating several processes ranging from the development and survival of lymphocytes and lymphoid organs to the control of immune responses and malignant transformation. The five members of the NF-κB family are normally kept inactive in the cytoplasm by interaction with inhibitors called IκBs or the unprocessed forms of NF-κB1 and NF-κB2. A wide variety of signals emanating from antigen receptors, pattern-recognition receptors, receptors for the members of TNF and IL-1 cytokine families, and others induce differential activation of NF-κB heterodimers. Although work over the past two decades has shed significant light on the regulation of NF-κB transcription factors and their functions, much progress has been made in the past two years revealing new insights into the regulation and functions of NF-κB...

2,380 citations


Journal ArticleDOI
TL;DR: It is shown that cell priming through multiple signaling receptors induces NLRP3 expression, which is identified to be a critical checkpoint for NLRP2 activation and signals provided by NF-κB activators are necessary but not sufficient forNLRP3 activation.
Abstract: The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1β transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1β. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli. How the activation of gene transcription by signaling receptors enables NLRP3 activation remains elusive and controversial. In this study, we show that cell priming through multiple signaling receptors induces NLRP3 expression, which we identified to be a critical checkpoint for NLRP3 activation. Signals provided by NF-κB activators are necessary but not sufficient for NLRP3 activation, and a second stimulus such as ATP or crystal-induced damage is required for NLRP3 activation.

2,189 citations


Journal ArticleDOI
TL;DR: It is shown that exhausted CD8+ T cells are subject to complex layers of negative regulation resulting from the coexpression of multiple inhibitory receptors, and regulation of T cell exhaustion by various inhibitory pathways was nonredundant.
Abstract: T cell exhaustion often occurs during chronic infection and prevents optimal viral control. The molecular pathways involved in T cell exhaustion remain poorly understood. Here we show that exhausted CD8+ T cells are subject to complex layers of negative regulation resulting from the coexpression of multiple inhibitory receptors. Exhausted CD8+ T cells expressed up to seven inhibitory receptors. Coexpression of multiple distinct inhibitory receptors was associated with greater T cell exhaustion and more severe infection. Regulation of T cell exhaustion by various inhibitory pathways was nonredundant, as blockade of the T cell inhibitory receptors PD-1 and LAG-3 simultaneously and synergistically improved T cell responses and diminished viral load in vivo. Thus, CD8+ T cell responses during chronic viral infections are regulated by complex patterns of coexpressed inhibitory receptors.

1,775 citations


Journal ArticleDOI
TL;DR: Recent insights into pathogen sensing by PRRs are summarized and specific signaling pathways that lead to expression of genes that tailor immune responses to particular microbes are summarized.
Abstract: The mammalian innate immune system detects the presence of microbial infection through germ line-encoded pattern recognition receptors (PRRs). Toll-like receptors, retinoic acid-inducible gene-I-like receptors and nucleotide-binding oligomerization domain-like receptors serve as PRRs that recognize different but overlapping microbial components. They are expressed in different cellular compartments such as the cell surface, endosome, lysosome or cytoplasm and activate specific signaling pathways that lead to expression of genes that tailor immune responses to particular microbes. This review summarizes recent insights into pathogen sensing by these PRRs and their signaling pathways.

1,496 citations


Journal ArticleDOI
02 Jul 2009-Nature
TL;DR: It is shown that tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an adaptor protein in the TNF-receptor and interleukin-1R/Toll-like receptor superfamily, regulates CD8 TM-cell development after infection by modulating fatty acid metabolism.
Abstract: CD8 T cells, which have a crucial role in immunity to infection and cancer, are maintained in constant numbers, but on antigen stimulation undergo a developmental program characterized by distinct phases encompassing the expansion and then contraction of antigen-specific effector (T(E)) populations, followed by the persistence of long-lived memory (T(M)) cells. Although this predictable pattern of CD8 T-cell responses is well established, the underlying cellular mechanisms regulating the transition to T(M) cells remain undefined. Here we show that tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an adaptor protein in the TNF-receptor and interleukin-1R/Toll-like receptor superfamily, regulates CD8 T(M)-cell development after infection by modulating fatty acid metabolism. We show that mice with a T-cell-specific deletion of TRAF6 mount robust CD8 T(E)-cell responses, but have a profound defect in their ability to generate T(M) cells that is characterized by the disappearance of antigen-specific cells in the weeks after primary immunization. Microarray analyses revealed that TRAF6-deficient CD8 T cells exhibit altered expression of genes that regulate fatty acid metabolism. Consistent with this, activated CD8 T cells lacking TRAF6 display defective AMP-activated kinase activation and mitochondrial fatty acid oxidation (FAO) in response to growth factor withdrawal. Administration of the anti-diabetic drug metformin restored FAO and CD8 T(M)-cell generation in the absence of TRAF6. This treatment also increased CD8 T(M) cells in wild-type mice, and consequently was able to considerably improve the efficacy of an experimental anti-cancer vaccine.

1,325 citations


Journal ArticleDOI
09 Jan 2009-Cell
TL;DR: Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.

1,120 citations


Journal ArticleDOI
TL;DR: The history of the LDL receptor is recounted by its codiscoverers to explain a genetic cause of heart attacks and introduce three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors.
Abstract: In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

1,099 citations


Journal ArticleDOI
TL;DR: It is suggested that incorporation of the CD137 signaling domain in CARs should improve the persistence of CARs in the hematologic malignancies and hence maximize their antitumor activity.

1,097 citations


Journal ArticleDOI
TL;DR: The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.

Journal ArticleDOI
TL;DR: Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients.
Abstract: In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.

Journal ArticleDOI
TL;DR: Toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.
Abstract: In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.

Journal ArticleDOI
TL;DR: Data is discussed showing the important role that the PI3K/Akt pathway plays, not only in cancer development, but also in response to targeted therapies, and mechanisms contributing to resistance to ErbB-targeted therapeutics will be discussed.

Journal ArticleDOI
TL;DR: Alleles associated with enhanced expression of FKBP5 following GR activation, lead to an increased GR resistance and decreased efficiency of the negative feedback of the stress hormone axis in healthy controls, which results in a prolongation of stress hormone system activation following exposure to stress.

Journal ArticleDOI
TL;DR: The biology of four different ligand–receptor interactions and how blocking or inducing the signalling pathways that are triggered by these different interactions can be an effective way to modulate immune responses are explored.
Abstract: Interactions that occur between several tumour necrosis factor (TNF)-TNF receptors that are expressed by T cells and various other immune and non-immune cell types are central to T-cell function. In this Review, I discuss the biology of four different ligand-receptor interactions - OX40 ligand and OX40, 4-1BB ligand and 4-1BB, CD70 and CD27, and TL1A and death receptor 3 - and their potential to be exploited for therapeutic benefit. Manipulating these interactions can be effective for treating diseases in which T cells have an important role, including inflammatory conditions, autoimmunity and cancer. Here, I explore how blocking or inducing the signalling pathways that are triggered by these different interactions can be an effective way to modulate immune responses.

Journal ArticleDOI
TL;DR: This IP3/Ca2+ pathway is a remarkably versatile signalling system that has been adapted to control processes as diverse as fertilization, proliferation, contraction, cell metabolism, vesicle and fluid secretion and information processing in neuronal cells.

Journal ArticleDOI
TL;DR: It is suggested that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli.
Abstract: In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation. Using LNA silencing combined to microarray technology, we have identified the Toll-like receptor/interleukin-1 (TLR/IL-1) inflammatory pathway as a general target of miR-155. We further demonstrate that miR-155 directly controls the level of TAB2, an important signal transduction molecule. Our observations suggest, therefore, that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli.

Journal ArticleDOI
TL;DR: An International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature is introduced and unmet challenges are discussed, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.
Abstract: Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.

Journal ArticleDOI
TL;DR: The NOD-like receptors are a specialized group of intracellular receptors that represent a key component of the host innate immune system and their ability to regulate nuclear factor-kappa B signaling, interleukin-1-beta production, and cell death indicates that they are crucial to the pathogenesis of a variety of inflammatory human diseases.
Abstract: The NOD-like receptors (NLRs) are a specialized group of intracellular receptors that represent a key component of the host innate immune system. Since the discovery of the first NLR almost 10 years ago, the study of this special class of microbial sensors has burgeoned; consequently, a better understanding of the mechanism by which these receptors recognize microbes and other danger signals and of how they activate inflammatory signaling pathways has emerged. Moreover, in addition to their primary role in host defense against invading pathogens, their ability to regulate nuclear factor-kappa B (NF-kappaB) signaling, interleukin-1-beta (IL-1beta) production, and cell death indicates that they are crucial to the pathogenesis of a variety of inflammatory human diseases.

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the assembly, activity and conformational transitions of nicotinic receptors are described, as well as developments in the therapeutic application of Nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Abstract: Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.

Journal ArticleDOI
05 Nov 2009-Nature
TL;DR: It is shown that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids and indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic -acid-sensing receptors is contingent on the more promiscuous sensing ofucleic acids by HMGBs.
Abstract: The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.

Journal ArticleDOI
TL;DR: It is found that the most prominent action of sigma-1 receptors in biological systems including cell lines, primary cultures, and animals is the regulation and modulation of voltage-regulated and ligand-gated ion channels, including Ca(2-)-, K(+)-, Na(+), Cl(-), and SK channels, and NMDA and IP3 receptors.

Journal ArticleDOI
30 Apr 2009-Neuron
TL;DR: A functional quantification of the subunit composition of AMPARs in the CNS is provided and novel roles for AMPAR subunits in receptor trafficking are suggested and suggested.

Journal ArticleDOI
TL;DR: Insights into these various death receptor signaling pathways provide new therapeutic strategies targeting these receptors in pathophysiological processes, including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor‐promoting activities.
Abstract: Death receptors are members of the tumor necrosis factor receptor superfamily characterized by a cytoplasmic region known as the “death domain” that enables the receptors to initiate cytotoxic signals when engaged by cognate ligands. Binding to the ligand results in receptor aggregation and recruitment of adaptor proteins, which, in turn, initiates a proteolytic cascade by recruiting and activating initiator caspases 8 and 10. Death receptors were once thought to primarily induce cytotoxic signaling cascades. However, recent data indicate that they initiate multiple signaling pathways, unveiling a number of nonapoptosis-related functions, including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor-promoting activities. These noncytotoxic cascades are not simply a manifestation of inhibiting proapoptotic pathways but are intrinsically regulated by adaptor protein and receptor internalization processes. Insights into these various death receptor signaling pathways provide new therapeutic strategies targeting these receptors in pathophysiological processes.—Guicciardi, M. E., Gores, G. J. Life and death by death receptors.

Journal ArticleDOI
03 Dec 2009-Nature
TL;DR: In this paper, crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex were reported, showing that apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops.
Abstract: Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

Journal ArticleDOI
TL;DR: The present review will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.
Abstract: Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

Journal ArticleDOI
TL;DR: It is shown that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon and suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon.
Abstract: Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor maximally, there have been no reports on the expression/function of GPR109A in this tissue. Here we show that GPR109A is expressed in the lumen-facing apical membrane of colonic and intestinal epithelial cells and that the receptor recognizes butyrate as a ligand. The expression of GPR109A is silenced in colon cancer in humans, in a mouse model of intestinal/colon cancer, and in colon cancer cell lines. The tumor-associated silencing of GPR109A involves DNA methylation directly or indirectly. Reexpression of GPR109A in colon cancer cells induces apoptosis, but only in the presence of its ligands butyrate and nicotinate. Butyrate is an inhibitor of histone deacetylases, but apoptosis induced by activation of GPR109A with its ligands in colon cancer cells does not involve inhibition of histone deacetylation. The primary changes in this apoptotic process include down-regulation of Bcl-2, Bcl-xL, and cyclin D1 and up-regulation of death receptor pathway. In addition, GPR109A/butyrate suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon. These studies show that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon.

Journal ArticleDOI
TL;DR: If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.

Journal ArticleDOI
11 Jun 2009-Blood
TL;DR: It is shown that CXCR7 per se does not trigger G( Ralphai) protein-dependent signaling, although energy transfer assays indicate that it constitutively interacts with G(alphai) proteins and undergoes CXCL12-mediated conformational changes.