scispace - formally typeset
Search or ask a question
Topic

Receptor

About: Receptor is a research topic. Over the lifetime, 159318 publications have been published within this topic receiving 8299881 citations.


Papers
More filters
Journal ArticleDOI
03 Aug 2006-Nature
TL;DR: P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties, and in autocrine loops of endothelial and epithelial cells.
Abstract: P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.

814 citations

Journal ArticleDOI
01 Jul 1988-Science
TL;DR: Estradiol can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.
Abstract: High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

811 citations

Journal Article
TL;DR: This review examines the recent progress in the field of angiotensin receptors and notes that multiplicity of these receptors was demonstrated initially on the basis of pharmacologic differences and then confirmed by expression cloning.
Abstract: This review examines the recent progress in the field of angiotensin receptors. Multiplicity of these receptors was demonstrated initially on the basis of pharmacologic differences and then confirmed by expression cloning. AT1 receptors are predominant in the adult. They are widely distributed and mediate all of the known biologic effects of angiotensin II (AngII) through a variety of signal transduction systems, including activation of phospholipases C and A2, inhibition of adenylate cyclase, opening of calcium channels, and activation of tyrosine kinases. AT2 receptors are predominant in the fetus, but also present in adult tissues such as the adrenals, ovaries, uterus, and brain. AngII via these receptors exerts effects often opposed to those mediated by the AT1 receptors. Signal transduction implicates protein tyrosine phosphatase stimulation. AT1 and AT2 receptor expressions are regulated differently, and regulation is also tissue-specific. AT1 and AT2 receptors have been demonstrated in endothelial cells. Activation of AT1 receptors results in production of vasodilatory agents, nitric oxide, and prostacyclin (PGI2), which counteract the direct vasoconstrictor effects of Ang II on the adjacent smooth muscle cells. AT1 receptors on mesangial cells, smooth muscle cells, and fibroblasts are involved in cell growth and fibrosis, the latter being due both to an increase in the synthesis and a decrease in the degradation of the main components of the extracellular matrix. These AT1 receptor-dependent effects are for the most part indirect and mediated by growth factors, cytokines, and other peptides, including endothelin, transforming growth factor-beta1, and platelet-derived growth factor. AngII is metabolized into active fragments by deletion of the terminal amino acids on both ends. AngIII and AngIV are formed by successive deletions of aspartic acid and arginine at the N terminus. AngII (1-7) is obtained by deletion of phenylalanine at the C terminus. AngIII shares the same receptors and exerts the same effects as AngII. AngIV and AngII (1-7) recognize the AT1 and AT2 receptors with a lesser affinity than AngII and, in addition, possess their own receptors that mediate effects often opposed to those of AngII.

810 citations

Journal ArticleDOI
TL;DR: Paired single-cell RNA and T cell receptor sequencing on 79,046 cells from site-matched tumors from patients with basal or squamous cell carcinoma before and after anti-PD-1 therapy demonstrates that pre-existing tumor-specific T cells may have limited reinvigoration capacity, and that the T cell response to checkpoint blockade derives from a distinct repertoire of T cell clones that may have just recently entered the tumor.
Abstract: Immunotherapies that block inhibitory checkpoint receptors on T cells have transformed the clinical care of patients with cancer1. However, whether the T cell response to checkpoint blockade relies on reinvigoration of pre-existing tumor-infiltrating lymphocytes or on recruitment of novel T cells remains unclear2-4. Here we performed paired single-cell RNA and T cell receptor sequencing on 79,046 cells from site-matched tumors from patients with basal or squamous cell carcinoma before and after anti-PD-1 therapy. Tracking T cell receptor clones and transcriptional phenotypes revealed coupling of tumor recognition, clonal expansion and T cell dysfunction marked by clonal expansion of CD8+CD39+ T cells, which co-expressed markers of chronic T cell activation and exhaustion. However, the expansion of T cell clones did not derive from pre-existing tumor-infiltrating T lymphocytes; instead, the expanded clones consisted of novel clonotypes that had not previously been observed in the same tumor. Clonal replacement of T cells was preferentially observed in exhausted CD8+ T cells and evident in patients with basal or squamous cell carcinoma. These results demonstrate that pre-existing tumor-specific T cells may have limited reinvigoration capacity, and that the T cell response to checkpoint blockade derives from a distinct repertoire of T cell clones that may have just recently entered the tumor.

810 citations

Journal ArticleDOI
01 Dec 2001-Diabetes
TL;DR: Data demonstrate that ligands of RAGE can induce sustained activation of NF-kappaB as a result of increased levels of de novo synthesized NF-KappaBp65 overriding endogenous negative feedback mechanisms and thus might contribute to the persistent NF- kappaB activation observed in hyperglycemia and possibly other chronic diseases.
Abstract: Activation of the transcription factor nuclear factor-kappaB (NF-kappaB) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-kappaB in vitro, we observed a long-lasting sustained activation of NF-kappaB in the absence of decreased IkappaBalpha in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-kappaBp65. A comparable increase in NF-kappaBp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid-beta peptide (Abeta) to the transmembrane receptor for AGE (RAGE) results in protein synthesis-dependent sustained activation of NF-kappaB both in vitro and in vivo. Infusion of AGE-albumin into mice bearing a beta-globin reporter transgene under control of NF-kappaB also resulted in prolonged expression of the reporter transgene. In vitro studies showed that RAGE-expressing cells induced sustained translocation of NF-kappaB (p50/p65) from the cytoplasm into the nucleus for >1 week. Sustained NF-kappaB activation by ligands of RAGE was mediated by initial degradation of IkappaB proteins followed by new synthesis of NF-kappaBp65 mRNA and protein in the presence of newly synthesized IkappaBalpha and IkappaBbeta. These data demonstrate that ligands of RAGE can induce sustained activation of NF-kappaB as a result of increased levels of de novo synthesized NF-kappaBp65 overriding endogenous negative feedback mechanisms and thus might contribute to the persistent NF-kappaB activation observed in hyperglycemia and possibly other chronic diseases.

809 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cell culture
133.3K papers, 5.3M citations
91% related
Cytokine
79.2K papers, 4.4M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,222
20226,323
20213,048
20203,388
20193,290