scispace - formally typeset
Search or ask a question
Topic

Receptor

About: Receptor is a research topic. Over the lifetime, 159318 publications have been published within this topic receiving 8299881 citations.


Papers
More filters
Journal ArticleDOI
16 May 1991-Nature
TL;DR: The expression cloning of a complementary DNA encoding a bovine angiotensin II receptor is reported to overcome the difficulties faced in purifying the receptor owing to its instability and low concentration.
Abstract: Angiotensin II elicits different responses which affect cardiovascular, neuronal and electrolyte transport regulation. To understand the mechanisms responsible for its various actions, the receptor for angiotensin II has long been sought, but numerous attempts to purify the receptor have been unsuccessful owing to its instability and low concentration. We report here the expression cloning of a complementary DNA encoding a bovine angiotensin II receptor to overcome these difficulties. The receptor cDNA encodes a protein of 359 amino-acid residues with a transmembrane topology similar to that of other G protein-coupled receptors. COS-7 cells transfected with the cDNA expressed specific and high-affinity binding sites for angiotensin II, angiotensin II antagonist and a non-peptide specific antagonist for type-1 receptor. Dithiothreitol inhibited ligand binding. The concentration of intracellular Ca2+ and of inositol-1,4,5-trisphosphate increased in the transfected COS-7 cells in response to angiotensin II or angiotensin III, indicating that this receptor is the type-1 receptor for angiotensin II. Northern blot analysis revealed that the messenger RNA for this receptor is expressed in bovine adrenal medulla, cortex and kidney.

786 citations

Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: Structural and functional studies indicate that the conserved surface patch may mediate interactions with the downstream MyD88 adapter molecule, and that the Lps d mutation may abolish receptor signalling by disrupting this recruitment.
Abstract: Toll-like receptors (TLRs) and the interleukin-1 receptor superfamily (IL-1Rs) are integral to both innate and adaptive immunity for host defence. These receptors share a conserved cytoplasmic domain, known as the TIR domain. A single-point mutation in the TIR domain of murine TLR4 (Pro712His, the Lps(d) mutation) abolishes the host immune response to lipopolysaccharide (LPS), and mutation of the equivalent residue in TLR2, Pro681His, disrupts signal transduction in response to stimulation by yeast and gram-positive bacteria. Here we report the crystal structures of the TIR domains of human TLR1 and TLR2 and of the Pro681His mutant of TLR2. The structures have a large conserved surface patch that also contains the site of the Lps(d) mutation. Mutagenesis and functional studies confirm that residues in this surface patch are crucial for receptor signalling. The Lps(d) mutation does not disturb the structure of the TIR domain itself. Instead, structural and functional studies indicate that the conserved surface patch may mediate interactions with the down-stream MyD88 adapter molecule, and that the Lps(d) mutation may abolish receptor signalling by disrupting this recruitment.

786 citations

Journal ArticleDOI
30 Oct 1987-Science
TL;DR: The gene for the human platelet alpha 2-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor, and two related genes have been identified by low stringency Southern blot analysis.
Abstract: The gene for the human platelet alpha 2-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor. The identity of this gene has been confirmed by the binding of alpha 2-adrenergic ligands to the cloned receptor expressed in Xenopus laevis oocytes. The deduced amino acid sequence is most similar to the recently cloned human beta 2- and beta 1-adrenergic receptors; however, similarities to the muscarinic cholinergic receptors are also evident. Two related genes have been identified by low stringency Southern blot analysis. These genes may represent additional alpha 2-adrenergic receptor subtypes.

786 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Human neutrophils release adenosine triphosphate from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors, which provides signal amplification, controlling gradient sensing and migration of neutrophil.
Abstract: Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.

785 citations

Journal ArticleDOI
TL;DR: It is doubtful that one unifying mechanism of action will be found for this hormone, as several potential components of the signal transduction pathways have been identified, but as yet none has clearly been shown to be able to mimic the effect of PRL or GH.
Abstract: PRL and GH are hormones with a wide spectrum of actions. Specific receptors are widely distributed in a number of classical target organs, but other tissues that are not known targets also contain measurable binding sites or receptor mRNA. The most likely explanation is that PRL and GH cause effects that have not yet been characterized in certain tissues. Cloning of the cDNAs encoding PRL and GH receptors has led to the discovery that the receptors, like the hormones themselves, form a gene family. Multiple receptor forms have been identified, including a short form, which for PRL is a membrane-bound receptor or for GH is a soluble BP, and a long form, which for both PRL and GH is a membrane-bound receptor. PRL and GH receptors, and the mRNAs encoding them, can be up- and down-regulated. GH induces an up-regulation of both GH and PRL receptors, whereas PRL stimulates an increase of only its own receptor. High concentrations of either hormone induce a homologous down-regulation of receptor expression. An assay has been developed to measure the functional activity of different forms of PRL receptor by cotransfecting a milk protein fusion gene specific to PRL coupled to a reporter-gene along with the cDNA of the PRL receptor. Although the short form represents the major form present in rat mammary gland, only the long form of receptor is able to stimulate milk protein gene transcription. For GH, increased expression of the receptor in some target cells is accompanied by a modest enhancement of the response to GH. No single second messenger mediating the action of either PRL or GH has been identified. Several potential components of the signal transduction pathways have been identified, but as yet none has clearly been shown to be able to mimic the effect of PRL or GH. Because of the wide range of biological actions associated with PRL, and the existence of various forms of PRL receptors, it is doubtful that one unifying mechanism of action will be found for this hormone. No human or animal model of a genetic defect of the PRL receptor has thus far been published. Mutations in the GH receptor gene have been demonstrated in Laron type dwarfism. Different exon deletions or point or nonsense mutations resulting in modifications in the extracellular, GH binding region of the GH receptor have been reported.(ABSTRACT TRUNCATED AT 400 WORDS)

785 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cell culture
133.3K papers, 5.3M citations
91% related
Cytokine
79.2K papers, 4.4M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,222
20226,323
20213,048
20203,388
20193,290