scispace - formally typeset
Search or ask a question
Topic

Receptor

About: Receptor is a research topic. Over the lifetime, 159318 publications have been published within this topic receiving 8299881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The R576 allele of interleukin-4 receptor alpha is strongly associated with atopy, and this mutation may predispose persons to allergic diseases by altering the signaling function of the receptor.
Abstract: Background Atopic diseases are very common, and atopy has a strong genetic predisposition. Methods Using single-strand conformation polymorphism analysis and DNA sequencing, we searched for mutations in the α subunit of the interleukin-4 receptor that would predispose persons to atopy. We examined the prevalence of the alleles among patients with allergic inflammatory disorders and among 50 prospectively recruited adults. Subjects with atopy were identified on the basis of an elevated serum lgE level (>95 IU per milliliter) or a positive radioimmunosorbent test in response to standard inhalant allergens. The signaling function of mutant interleukin-4 receptor α was examined by flow cytometry, binding assays, and immunoblotting. Results A novel interleukin-4 receptor α allele was identified in which guanine was substituted for adenine at nucleotide 1902, causing a change from glutamine to arginine at position 576 (R576) in the cytoplasmic domain of the interleukin-4 receptor α protein. The R576 allele was ...

740 citations

Journal ArticleDOI
14 Aug 1997-Nature
TL;DR: It is established that prostacyclin is an antithrombotic agent in vivo and evidence for its role as a mediator of inflammation and pain is provided.
Abstract: Prostanoids are a group of bioactive lipids working as local mediators and include D, E, F and I types of prostaglandins (PGs) and thromboxanes. Prostacyclin (PGI2) acts on platelets and blood vessels to inhibit platelet aggregation and to cause vasodilatation, and is thought to be important for vascular homeostasis. Aspirin-like drugs, including indomethacin, which inhibit prostanoid biosynthesis, suppress fever, inflammatory swelling and pain, and interfere with female reproduction, suggesting that prostanoids are involved in these processes, although it is not clear which prostanoid is the endogenous mediator of a particular process. Prostanoids act on seven-transmembrane-domain receptors which are selective for each type. Here we disrupt the gene for the prostacyclin receptor in mice by using homologous recombination. The receptor-deficient mice are viable, reproductive and normotensive. However, their susceptibility to thrombosis is increased, and their inflammatory and pain responses are reduced to the levels observed in indomethacin-treated wild-type mice. Our results establish that prostacyclin is an antithrombotic agent in vivo and provide evidence for its role as a mediator of inflammation and pain.

740 citations

Journal Article
TL;DR: Data is presented that support a role for transforming growth factor (TGF)-beta in this regulatory process that limits B lymphocyte proliferation and ultimate differentiation and it was demonstrated that B lymphocytes secrete TGF-beta.
Abstract: The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.

740 citations

Journal ArticleDOI
TL;DR: It is reported that corticosterone also rapidly and reversibly changes hippocampal signaling, and would allow the brain to change its function within minutes after stress-induced elevations of corticosteroid levels, in addition to responding later through gene-mediated signaling pathways.
Abstract: The adrenal hormone corticosterone transcriptionally regulates responsive genes in the rodent hippocampus through nuclear mineralocorticoid and glucocorticoid receptors. Via this genomic pathway the hormone alters properties of hippocampal cells slowly and for a prolonged period. Here we report that corticosterone also rapidly and reversibly changes hippocampal signaling. Stress levels of the hormone enhance the frequency of miniature excitatory postsynaptic potentials in CA1 pyramidal neurons and reduce paired-pulse facilitation, pointing to a hormone-dependent enhancement of glutamate-release probability. The rapid effect by corticosterone is accomplished through a nongenomic pathway involving membrane-located receptors. Unexpectedly, the rapid effect critically depends on the classical mineralocorticoid receptor, as evidenced by the effectiveness of agonists, antagonists, and brain-specific inactivation of the mineralocorticoid but not the glucocorticoid receptor gene. Rapid actions by corticosterone would allow the brain to change its function within minutes after stress-induced elevations of corticosteroid levels, in addition to responding later through gene-mediated signaling pathways.

740 citations

Journal ArticleDOI
17 Dec 1993-Science
TL;DR: The results suggest that theIL-2 receptor gamma chain is functionally involved in the IL-4 receptor complex, which is an indispensable subunit for IL-2 binding and intracellular signal transduction.
Abstract: The gamma chain of the interleukin-2 (IL-2) receptor is an indispensable subunit for IL-2 binding and intracellular signal transduction. A monoclonal antibody to the gamma chain, TUGm2, inhibited IL-2 binding to the functional IL-2 receptors and also inhibited IL-4-induced cell growth and the high-affinity binding of IL-4 to the CTLL-2 mouse T cell line. Another monoclonal antibody, TUGm3, which reacted with the gamma chain cross-linked with IL-2, also immunoprecipitated the gamma chain when cross-linked with IL-4. These results suggest that the IL-2 receptor gamma chain is functionally involved in the IL-4 receptor complex.

739 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cell culture
133.3K papers, 5.3M citations
91% related
Cytokine
79.2K papers, 4.4M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,222
20226,323
20213,048
20203,388
20193,290