scispace - formally typeset
Search or ask a question
Topic

Receptor

About: Receptor is a research topic. Over the lifetime, 159318 publications have been published within this topic receiving 8299881 citations.


Papers
More filters
Journal ArticleDOI
01 Aug 1986-Cell
TL;DR: The cloned receptor protein activates its corresponding enhancers, restoring to the receptor-deficient cells the full capacity for regulated enhancement.

685 citations

Journal ArticleDOI
TL;DR: Toll receptors and the associated signaling pathways of nuclear factor kappaB may represent the most ancient host defense system found in mammals, insects and plants.

685 citations

Journal ArticleDOI
28 Apr 2011-Nature
TL;DR: The ‘phagocytic synapse’ now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.
Abstract: Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.

684 citations

Journal ArticleDOI
TL;DR: Understanding the mechanisms of TGF‐β superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-β super family signalling is involved.
Abstract: Members of the transforming growth factor-beta (TGF-beta) superfamily bind to two different serine/threonine kinase receptors, i.e. type I and type II receptors. Upon ligand binding, type I receptors specifically activate intracellular Smad proteins. R-Smads are direct substrates of type I receptors; Smads 2 and 3 are specifically activated by activin/nodal and TGF-beta type I receptors, whereas Smads 1, 5 and 8 are activated by BMP type I receptors. Nearly 30 proteins have been identified as members of the TGF-beta superfamily in mammals, and can be classified based on whether they activate activin/TGF-beta-specific R-Smads (AR-Smads) or BMP-specific R-Smads (BR-Smads). R-Smads form complexes with Co-Smads and translocate into the nucleus, where they regulate the transcription of target genes. AR-Smads bind to various proteins, including transcription factors and transcriptional co-activators or co-repressors, whereas BR-Smads interact with other proteins less efficiently than AR-Smads. Id proteins are induced by BR-Smads, and play important roles in exhibiting some biological effects of BMPs. Understanding the mechanisms of TGF-beta superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-beta superfamily signalling is involved.

683 citations

Journal ArticleDOI
24 Sep 1993-Science
TL;DR: Two unrelated receptors may activate a common nuclear signal transduction pathway that, through differential use of latent cytoplasmic proteins, permits these receptors to regulate both common and unique sets of genes.
Abstract: Growth factors and cytokines act through cell surface receptors with different biochemical properties Yet each type of receptor can elicit similar as well as distinct biological responses in target cells, suggesting that distinct classes of receptors activate common gene sets Epidermal growth factor, interferon-gamma, and interleukin-6 all activated, through direct tyrosine phosphorylation, latent cytoplasmic transcription factors that recognized similar DNA elements However, different ligands activated different patterns of factors with distinct DNA-binding specificities in the same and different cells Thus, unrelated receptors may activate a common nuclear signal transduction pathway that, through differential use of latent cytoplasmic proteins, permits these receptors to regulate both common and unique sets of genes

683 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cell culture
133.3K papers, 5.3M citations
91% related
Cytokine
79.2K papers, 4.4M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,222
20226,323
20213,048
20203,388
20193,290