scispace - formally typeset
Search or ask a question
Topic

Receptor

About: Receptor is a research topic. Over the lifetime, 159318 publications have been published within this topic receiving 8299881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The insulin-like growth factor (IGF) family of ligands, binding proteins and receptors is an important growth factor system involved in both the development of the organism and the maintenance of normal function of many cells of the body.

1,014 citations

Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: The cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes is reported, showing that L TB4 is a unique lipid mediator that interacts with both cell- surface and nuclear receptors.
Abstract: Leukotriene B4(LTB4)1 is a potent chemoattractant that is primarily involved in inflammation, immune responses and host defence against infection2. LTB4 activates inflammatory cells by binding to its cell-surface receptor (BLTR)3. LTB4 can also bind and activate the intranuclear transcription factor PPARα, resulting in the activation of genes that terminate inflammatory processes4. Here we report the cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes. Using a subtraction strategy, we isolated two cDNA clones (HL-1 and HL-5) from retinoic acid-differentiated HL-60 cells. These two clones contain identical open reading frames encoding a protein of 352 amino acids and predicted to contain seven membrane-spanning domains, but different 5′-untranslated regions. Membrane fractions of Cos-7 cells transfected with an expression construct containing the open reading frame of HL-5 showed specific LTB4 binding, with a Kd(0.154nM) comparable to that observed in retinoic acid-differentiated HL-60 cells. In CHO cells stably expressing this receptor, LTB4 induced increases in intracellular calcium, D-myo-inositol-1,4,5-triphosphate (InsP3) accumulation, and inhibition of adenylyl cyclase. Furthermore, CHO cells expressing exogenous BLTR showed marked chemotactic responses towards low concentrations of LTB4 in a pertussis-toxin-sensitive manner. Our findings, together with previous reports4,5, show that LTB4 is a unique lipid mediator that interacts with both cell-surface and nuclear receptors.

1,012 citations

Journal ArticleDOI
TL;DR: The most potent and specific neuroleptics seemed to influence mainly the brain DA mechanisms, both functionally and chemically.

1,010 citations

Journal ArticleDOI
27 Nov 1998-Science
TL;DR: Rho guanosine triphosphatases (molecular switches that control the organization of the actin cytoskeleton) were found to be essential for both types of phagocytosis.
Abstract: The complement and immunoglobulin receptors are the major phagocytic receptors involved during infection. However, only immunoglobulin-dependent uptake results in a respiratory burst and an inflammatory response in macrophages. Rho guanosine triphosphatases (molecular switches that control the organization of the actin cytoskeleton) were found to be essential for both types of phagocytosis. Two distinct mechanisms of phagocytosis were identified: Type I, used by the immunoglobulin receptor, is mediated by Cdc42 and Rac, and type II, used by the complement receptor, is mediated by Rho. These results suggest a molecular basis for the different biological consequences that are associated with phagocytosis.

1,009 citations

Journal ArticleDOI
TL;DR: The current and rapidly expanding knowledge about the biological functions of death receptors and the mechanisms to trigger or to counteract cell death are summarized.
Abstract: Death receptors have been recently identified as a subgroup of the TNF-receptor superfamily with a predominant function in induction of apoptosis. The receptors are characterized by an intracellular region, called the death domain, which is required for the transmission of the cytotoxic signal. Currently, five different such death receptors are known including tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2. The signaling pathways by which these receptors induce apoptosis are rather similar. Ligand binding induces receptor oligomerization, followed by the recruitment of an adaptor protein to the death domain through homophilic interaction. The adaptor protein then binds a proximal caspase, thereby connecting receptor signaling to the apoptotic effector machinery. In addition, further pathways have been linked to death receptor-mediated apoptosis, such as sphingomyelinases, JNK kinases and oxidative stress. These pro-apoptotic signals are counteracted by several mechanisms which inhibit apoptosis at different levels. This review summarizes the current and rapidly expanding knowledge about the biological functions of death receptors and the mechanisms to trigger or to counteract cell death.

1,007 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cell culture
133.3K papers, 5.3M citations
91% related
Cytokine
79.2K papers, 4.4M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,222
20226,323
20213,048
20203,388
20193,290