scispace - formally typeset
Search or ask a question
Topic

Reconstruction algorithm

About: Reconstruction algorithm is a research topic. Over the lifetime, 7839 publications have been published within this topic receiving 136780 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD‐AUTO‐SMASH reconstruction techniques and provides unaliased images from each component coil prior to image combination.
Abstract: In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate RF field map is not needed prior to reconstruction in GRAPPA. This information is obtained from several k-space lines which are acquired in addition to the normal image acquisition. As in PILS, the GRAPPA reconstruction algorithm provides unaliased images from each component coil prior to image combination. This results in even higher SNR and better image quality since the steps of image reconstruction and image combination are performed in separate steps. After introducing the GRAPPA technique, primary focus is given to issues related to the practical implementation of GRAPPA, including the reconstruction algorithm as well as analysis of SNR in the resulting images. Finally, in vivo GRAPPA images are shown which demonstrate the utility of the technique.

5,022 citations

Book
01 Jan 1986
TL;DR: In this paper, the Radon transform and related transforms have been studied for stability, sampling, resolution, and accuracy, and quite a bit of attention is given to the derivation, analysis, and practical examination of reconstruction algorithm, for both standard problems and problems with incomplete data.
Abstract: The Mathematics of Computerized Tomography covers the relevant mathematical theory of the Radon transform and related transforms and also studies more practical questions such as stability, sampling, resolution, and accuracy. Quite a bit of attention is given to the derivation, analysis, and practical examination of reconstruction algorithm, for both standard problems and problems with incomplete data.

3,600 citations

Journal ArticleDOI
TL;DR: A review of methods for the forward and inverse problems in optical tomography can be found in this paper, where the authors focus on the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction.
Abstract: We present a review of methods for the forward and inverse problems in optical tomography. We limit ourselves to the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction. We discuss the derivation of the diffusion approximation and other simplifications of the full transport problem. We develop sensitivity relations in both the continuous and discrete case with special concentration on the use of the finite element method. A classification of algorithms is presented, and some suggestions for open problems to be addressed in future research are made.

2,609 citations

Journal ArticleDOI
Luc Vincent1
TL;DR: An algorithm that is based on the notion of regional maxima and makes use of breadth-first image scannings implemented using a queue of pixels results in a hybrid gray-scale reconstruction algorithm which is an order of magnitude faster than any previously known algorithm.
Abstract: Two different formal definitions of gray-scale reconstruction are presented. The use of gray-scale reconstruction in various image processing applications discussed to illustrate the usefulness of this transformation for image filtering and segmentation tasks. The standard parallel and sequential approaches to reconstruction are reviewed. It is shown that their common drawback is their inefficiency on conventional computers. To improve this situation, an algorithm that is based on the notion of regional maxima and makes use of breadth-first image scannings implemented using a queue of pixels is introduced. Its combination with the sequential technique results in a hybrid gray-scale reconstruction algorithm which is an order of magnitude faster than any previously known algorithm. >

2,064 citations

Journal ArticleDOI
David S. Tuch1
TL;DR: This work has shown that it is possible to resolve intravoxel fiber crossing using mixture model decomposition of the high angular resolution diffusion imaging (HARDI) signal, but mixture modeling requires a model of the underlying diffusion process.
Abstract: Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-space diffusion imaging, but q-space imaging requires large pulsed field gradients and time-intensive sampling. It is also possible to resolve intravoxel fiber crossing using mixture model decomposition of the high angular resolution diffusion imaging (HARDI) signal, but mixture modeling requires a model of the underlying diffusion process. Recently, it has been shown that the HARDI signal can be reconstructed model-independently using a spherical tomographic inversion called the Funk–Radon transform, also known as the spherical Radon transform. The resulting imaging method, termed q-ball imaging, can resolve multiple intravoxel fiber orientations and does not require any assumptions on the diffusion process such as Gaussianity or multi-Gaussianity. The present paper reviews the theory of q-ball imaging and describes a simple linear matrix formulation for the q-ball reconstruction based on spherical radial basis function interpolation. Open aspects of the q-ball reconstruction algorithm are discussed. Magn Reson Med 52:1358–1372, 2004. © 2004 Wiley-Liss, Inc.

1,991 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
88% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Convolutional neural network
74.7K papers, 2M citations
82% related
Feature (computer vision)
128.2K papers, 1.7M citations
81% related
Feature extraction
111.8K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202246
2021312
2020389
2019481
2018442