scispace - formally typeset
Search or ask a question
Topic

Recursively enumerable language

About: Recursively enumerable language is a research topic. Over the lifetime, 1508 publications have been published within this topic receiving 32382 citations.


Papers
More filters
Journal Article
TL;DR: In this paper, it was shown that the membership problem for deterministic 1-membrane catalytic P systems is decidable and that the Parikh map of the language accepted by any deterministic catalytic system is a simple semilinear set which can be effectively constructed.
Abstract: We look at a 1-membrane catalytic P system with evolution rules of the form Ca → Cv or a → v, where C is a catalyst, a is a noncatalyst symbol, and v is a (possibly null) string representing a multiset of noncatalyst symbols. (Note that we are only interested in the multiplicities of the symbols.) A catalytic system can be regarded as a language acceptor in the following sense. Given an input alphabet Σ consisting of noncatalyst symbols, the system starts with an initial configuration wz, where w is a fixed string of catalysts and noncatalysts not containing any symbol in z, and z = a 1 n1 ...a k nk for some nonnegative integers n 1 ,...,n k , with (a 1 ,...., a k ) C Σ. At each step, a maximal multiset of rules is nondeterministically selected and applied in parallel to the current configuration to derive the next configuration (note that the next configuration is not unique, in general). The string z is accepted if the system eventually halts. It is known that a 1-membrane catalytic system is universal in the sense that any unary recursively enumerable language can be accepted by a 1-membrane catalytic system (even by purely catalytic systems, i.e., when all rules are of the form Ca → Cv). A catalytic system is said to be deterministic if at each step, there is a unique maximally parallel multiset of rules applicable. It has been an open problem whether deterministic systems of this kind are universal. We answer this question negatively: We show that the membership problem for deterministic catalytic systems is decidable. In fact, we show that the Parikh map of the language (C a* 1 ...a* k accepted by any deterministic catalytic system is a simple semilinear set which can be effectively constructed. Since non-deterministic 1-membrane catalytic system acceptors (with 2 catalysts) are universal, our result gives the first example of a variant of P systems for which the nondeterministic version is universal, but the deterministic version is not. We also show that for a deterministic 1-membrane catalytic system using only rules of type Ca → Cv, the set of reachable configurations from a given initial configuration is an effective semilinear set. The application of rules of type a → v, however, is sufficient to render the reachability set non-semilinear. Our results generalize to multi-membrane deterministic catalytic systems. We also consider deterministic catalytic systems which allow rules to be prioritized and investigate three classes of such systems, depending on how priority in the application of the rules is interpreted. For these three prioritized systems, we obtain contrasting results: two are universal and one only accepts semilinear sets.

4 citations

Journal ArticleDOI
TL;DR: It is shown that whichever of the three rewriting modes is formalized, the resulting grammars generate precisely the family of context sensitive languages.
Abstract: A formalization of the sequential, parallel, and continuous rewriting based on a uniform underlying concept of selective substitution grammars is presented. Each of the rewriting modes is formalized through a universal derivation restriction characterizing the rewriting in question. It is shown that whichever of the three rewriting modes is formalized, the resulting grammars generate precisely the family of context sensitive languages. Moreover, when erasing productions are allowed, these grammars generate all recursively enumerable languages.

4 citations

Book ChapterDOI
23 Feb 2006
TL;DR: It is argued that for plain Kolmogorov complexity exactly the PA-complete sets compute incompressible words, while the class of sets that compute words of maximum complexity depends on the choice of the universal Turing machine, whereas for prefix-free Kolmogsorov simplicity exactly the complete sets allow to compute wordsof maximum complexity.
Abstract: We introduce the concepts of complex and autocomplex sets, where a set A is complex if there is a recursive, nondecreasing and unbounded lower bound on the Kolmogorov complexity of the prefixes (of the characteristic sequence) of A, and autocomplex is defined likewise with recursive replaced by A-recursive. We observe that exactly the autocomplex sets allow to compute words of given Kolmogorov complexity and demonstrate that a set computes a diagonally nonrecursive (DNR) function if and only if the set is autocomplex. The class of sets that compute DNR functions is intensively studied in recursion theory and is known to coincide with the class of sets that compute fixed-point free functions. Consequently, the Recursion Theorem fails relative to a set if and only if the set is autocomplex, that is, we have a characterization of a fundamental concept of theoretical computer science in terms of Kolmogorov complexity. Moreover, we obtain that recursively enumerable sets are autocomplex if and only if they are complete, which yields an alternate proof of the well-known completeness criterion for recursively enumerable sets in terms of computing DNR functions. All results on autocomplex sets mentioned in the last paragraph extend to complex sets if the oracle computations are restricted to truth-table or weak truth-table computations, for example, a set is complex if and only if it wtt-computes a DNR function. Moreover, we obtain a set that is complex but does not compute a Martin-Lof random set, which gives a partial answer to the open problem whether all sets of positive constructive Hausdorff dimension compute Martin-Lof random sets. Furthermore, the following questions are addressed: Given n, how difficult is it to find a word of length n that (a) has at least prefix-free Kolmogorov complexity n, (b) has at least plain Kolmogorov complexity n or (c) has the maximum possible prefix-free Kolmogorov complexity among all words of length n. All these questions are investigated with respect to the oracles needed to carry out this task and it is shown that (a) is easier than (b) and (b) is easier than (c). In particular, we argue that for plain Kolmogorov complexity exactly the PA-complete sets compute incompressible words, while the class of sets that compute words of maximum complexity depends on the choice of the universal Turing machine, whereas for prefix-free Kolmogorov complexity exactly the complete sets allow to compute words of maximum complexity.

4 citations

Book ChapterDOI
24 Jul 2017
TL;DR: This work investigates genPCol automata with input mappings that can be realized through the application of finite transducers to the string representations of multisets and shows that using unrestricted programs, these automata characterize the class of recursively enumerable languages.
Abstract: We investigate genPCol automata with input mappings that can be realized through the application of finite transducers to the string representations of multisets. We show that using unrestricted programs, these automata characterize the class of recursively enumerable languages. The same holds for systems with all-tape programs, having capacity at least two. In the case of systems with com-tape programs, we show that they characterize language classes which are closely related to those characterized by variants of P automata.

4 citations

Network Information
Related Topics (5)
Decidability
9.9K papers, 205.1K citations
91% related
Multimodal logic
6.1K papers, 178.8K citations
86% related
Type (model theory)
38.9K papers, 670.5K citations
86% related
Dynamic logic (modal logic)
6.6K papers, 210.3K citations
86% related
Mathematical proof
13.8K papers, 374.4K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202220
202127
202022
201918
201823