scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: Data indicate that oxidation of ascorbic acid by hydrogen peroxide primarily proceeds through three major six-carbon intermediates, each with distinctive redox properties, which indicate that the stable metabolite diketogulonic may be a critical antioxidant in asCorbic-acid-containing systems.

219 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art in the area of metalloprotein electrochemistry, focusing on two modes of charge transfer between the electrode and cytochrome c, namely, the heme edge and axial ligand assisted electron tunneling.

218 citations

Journal ArticleDOI
Yu Bai1, Qingjiang Yu1, Ning Cai1, Yinghui Wang1, Min Zhang1, Peng Wang1 
TL;DR: An iodine-free dye-sensitized solar cell exhibiting an impressive power conversion efficiency of 7.0% at 100 mW cm(-2) air mass global (AM1.5G) conditions is presented.

218 citations

Journal ArticleDOI
TL;DR: An opportunity for a new generation of targeted antioxidants to enhance and restore redox signalling and control in disease prevention is highlighted.
Abstract: Mammalian cells are highly organized to optimize function. For instance, oxidative energy-producing processes in mitochondria are sequestered away from plasma membrane redox signalling complexes and also from nuclear DNA, which is subject to oxidant-induced mutation. Proteins are unique among macromolecules in having reversible oxidizable elements, 'sulphur switches', which support dynamic regulation of structure and function. Accumulating evidence shows that redox signalling and control systems are maintained under kinetically limited steady states, which are highly displaced from redox equilibrium and distinct among organelles. Mitochondria are most reducing and susceptible to oxidation under stressed conditions, while nuclei are also reducing but relatively resistant to oxidation. Within compartments, the glutathione and thioredoxin systems serve parallel and non-redundant functions to maintain the dynamic redox balance of subsets of protein cysteines, which function in redox signalling and control. This organization allows cells to be poised to respond to cell stress but also creates sites of vulnerability. Importantly, disruption of redox organization is a common basis for disease. Research tools are becoming available to elucidate details of subcellular redox organization, and this development highlights an opportunity for a new generation of targeted antioxidants to enhance and restore redox signalling and control in disease prevention.

218 citations

Journal ArticleDOI
TL;DR: The achieved electrode with maximized exposed atomic active sites is beneficial for tailoring formation/decomposition mechanisms of uniformly distributed nano-sized lithium peroxide during oxygen reduction/evolution reactions due to abundant cobalt-nitrogen coordinate catalytic sites, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated over-potentials.
Abstract: Developing single-site catalysts featuring maximum atom utilization efficiency is urgently desired to improve oxidation-reduction efficiency and cycling capability of lithium-oxygen batteries. Here, we report a green method to synthesize isolated cobalt atoms embedded ultrathin nitrogen-rich carbon as a dual-catalyst for lithium-oxygen batteries. The achieved electrode with maximized exposed atomic active sites is beneficial for tailoring formation/decomposition mechanisms of uniformly distributed nano-sized lithium peroxide during oxygen reduction/evolution reactions due to abundant cobalt-nitrogen coordinate catalytic sites, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated over-potentials. Critically, theoretical simulations disclose that rich cobalt-nitrogen moieties as the driving force centers can drastically enhance the intrinsic affinity of intermediate species and thus fundamentally tune the evolution mechanism of the size and distribution of final lithium peroxide. In the lithium-oxygen battery, the electrode affords remarkably decreased charge/discharge polarization (0.40 V) and long-term cyclability (260 cycles at 400 mA g−1). The performance of Li-O2 batteries is largely determined by the oxygen electrocatalytic reactions at the cathode. Here, the authors report cobalt single-atom catalysts anchored on carbon nanosheets. The design improves oxygen redox kinetics and enables good electrochemical performance.

218 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219