scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
01 Aug 1973-Carbon
TL;DR: In this paper, the potentiodynamic sweep technique was applied to detect surface oxides on carbon black (Vulcan XC-72) which was subjected to heat treatment, electrochemical and chemical oxidation and gas phase oxidation.

218 citations

Journal ArticleDOI
TL;DR: In this article, a review of catalytic oxidation reactions, which are greatly influenced by solid state effects in the catalyst material, is presented, focusing on the correlation between the presence of mobile ionic defects, together with the associated ionic conductivity, and the catalytic performance.

218 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical hetero-structures dropcasted on carbon nitride (C3N4) anodes have been visualised by SEM and their catalytic performance have been examined in methanol electrooxidation reaction (MOR) under alkaline conditions.
Abstract: Ni, Cu and Cu–Ni nanostructures have been fabricated and homogeneously embedded on ultrathin two-dimensional (2D) carbon nitride (g-C3N4), and the surface morphology and composition of the resulting hybrid nanostructures were studied by XRD, TEM, HRTEM-elemental mapping, Raman spectroscopy and XPS. The new hierarchical hetero-structures dropcasted on GC anodes have been visualised by SEM and their catalytic performance have been examined in methanol electrooxidation reaction (MOR) under alkaline conditions. Nanosized Ni particles dispersed finely over g-C3N4 are very active electrocatalysts with MOR onset at potential 0.35 V and charge transfer resistance 0.12 kΩ. The stability of modyfied GC electrodes, examined under chronoamperometric conditions showed that for electrode loading with 4% (wt. %) of NiO the stable current density ca. 36 A g−1 (12 A cm2) was obtained during whole experiment (up to 160 min). For all catalyst studied the curent density obtained during MOR reaction was enhanced when electrode was iluminated by UV light λ∼400 nm, and the highest value were obtained for 4% Ni/CN catalyst ca. 127 A g−1 (22 A cm2). The Cu incorporation in the hybrid material evoke loss of activity mostly due to Cu+ irreversible reduction/oxidation to Cu° and Cu2+, CuO segregation and influencing electron transfer process which results in the increasing in the redox potential. These results represent an important step towards light-enhanced electro-reactive systems and sensors in which heterojunction formation can facilitate electron-hole separation and enable more efficient energy transfer.

217 citations

Journal ArticleDOI
TL;DR: A series of one-electron outersphere cobalt bipyridyl redox couples were used as redox shuttles in dye-sensitized solar cells (DSSCs) as discussed by the authors.
Abstract: A series of one-electron outersphere cobalt bipyridyl redox couples were used as redox shuttles in dye-sensitized solar cells (DSSCs). Atomic layer deposition was used to deposit an ultrathin coating of alumina on nanoparticle-based TiO2 DSSC photoanodes, which results in significantly improved quantum yields for all of the DSSCs containing outersphere redox systems. However, a significant discrepancy in performance remains between DSSCs containing the different cobalt redox shuttles. Variation of the driving force for regeneration by ∼500 mV, by employing [Ru(bpy)2(4,4′-dicarboxy-bpy)](PF6)2 as a dye, combined with concentration dependence studies indicates that the cobalt redox couples are not limited by dye regeneration; however, in certain cases the iodide electrolyte was, one of the very few systems where alternate redox couples perform significantly better than triiodide/iodide. Electron lifetimes were measured with the open circuit voltage decay technique. The differences in the lifetimes (recombin...

217 citations

Journal ArticleDOI
TL;DR: The current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants are described and the processes involved in oxidation of Fd are discussed, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Abstract: Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.

216 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219