scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high surface area CeO2-ZrO2 mixed oxides were treated at 900-950°C either under wet air or under successive reducing and oxidizing atmospheres in order to study the evolution of the oxygen storage capacity (OSC) of these solids after different aging treatments.

188 citations

Journal ArticleDOI
TL;DR: In this paper, a Co3O4-TiO2/Ti cathode with the optimized performance for NO3- reduction could be prepared by four times coating at calcination temperature of 500 °C.
Abstract: The presence of high nitrate (NO3−) concentration in natural water constitutes a serious issue to the environment and human health. Therefore, the development of low-cost, stable non-precious metal catalysts is imminent for efficient NO3- reduction. In this study, we prepared a Co3O4-TiO2/Ti cathode via combining sol-gel and calcination methods and evaluated its performance for electrocatalytic NO3- reduction. The dispersion of the Co3O4 catalyst particles was improved by the addition of PVP to the coating liquid. The presence of anatase could effectively stabilize Co3O4 and prevent the releasing of toxic Co ions into the solution. The Co3O4-TiO2/Ti cathode with the optimized performance for NO3- reduction could be prepared by four times coating at calcination temperature of 500 °C. The electrocatalytic reduction of NO3- was negligibly impacted by solution pH in the range of 3.0–9.0, while it could be facilitated by elevating the current density from 2.5 to 25 mA cm2. Ammonium ions were the main final NO3- reduction product, and the presence of Cl- was capable to oxidize ammonium ions to N2 due to the electrochemical production of reactive chlorine species. The electrochemical analyses, scavenging experiments and density functional theory calculations collectively confirm that NO3- reduction was mainly induced by the Co2+–Co3+–Co2+ redox process instead of being directly resulted from the electrons generated at the cathode. Unlike noble metal (e.g., Pd and Ag) based catalytic reaction systems, in the present Co3O4 mediated electrocatalytic reaction process, atomic H* would more favorably turn to H2 by Heyrovsky and Tafel routes and therefore contributed marginally to the NO3- reduction. Generally, this study provided a new paradigm for designing the stable and cost-effective cathode for NO3- reduction.

187 citations

Journal ArticleDOI
TL;DR: It is shown that zinc binding is essential for the function of this redox switch, and that Hps33 contains a new, high affinity, zinc-binding motif in the form Cys- X-Cys-X 27–32-CYS-X-X/Cys, which acts to coordinate a single zinc atom.

187 citations

Journal ArticleDOI
TL;DR: LiNi 0.5 O 4 spinels, where M=Fe, Mg, Al, or Cu, and y = 0.4, have been studied as highvoltage cathode materials as discussed by the authors.

187 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219