scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of Fe(II) in the oxidation of As(III) at the surface of magnetite and ferrihydrite under oxygenated conditions was investigated.
Abstract: To reduce the adverse effects of arsenic on humans, various technologies are used to remove arsenic from groundwater, most relying on As adsorption on Fe-(oxyhydr)oxides and concomitant oxidation of As(III) by dissolved O2. This reaction can be catalyzed by microbial activity or by strongly oxidizing radical species known to form upon oxidation of Fe(II) by dissolved O2. Such catalyzed oxidation reactions have been invoked to explain the enhanced kinetics of As(III) oxidation in aerated water, in the presence of zerovalent iron or dissolved Fe(II). In the present study, we used arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy to investigate the role of Fe(II) in the oxidation of As(III) at the surface of magnetite and ferrihydrite under oxygenated conditions. Our results show rapid oxidation of As(III) to As(V) upon sorption onto magnetite under oxic conditions at neutral pH. Moreover, under similar oxic conditions, As(III) oxidized upon sorption onto ferrihydrite only after additi...

168 citations

Journal ArticleDOI
TL;DR: SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs) and catalysts are prepared via aqueous solution ion exchange (IE). Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) spectroscopies as discussed by the authors.
Abstract: SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange (IE). Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3–SCR) and ammonia oxidation reactions. During solution IE, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al–O–Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily ...

168 citations

Journal ArticleDOI
TL;DR: In this paper, the physicico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts are investigated by EPR, FT-IR and reactivity tests under transient conditions.

168 citations

Journal ArticleDOI
TL;DR: In the Archean, anaerobic bacteria thrived before the Proterozoic oxidation of the atmosphere and the oceans, and these organisms continue to prosper in niches removed from molecular oxygen as discussed by the authors.
Abstract: Bacterial metabolism, involving redox reactions with carbon, sulfur, and metals, appears to have been important since the dawn of life on Earth. In the Archean, anaerobic bacteria thrived before the Proterozoic oxidation of the atmosphere and the oceans, and these organisms continue to prosper in niches removed from molecular oxygen. Both aerobes and anaerobes have profound effects on the geochemistry of dissolved metals and metal-bearing minerals. Aerobes can oxidize dissolved metals and reduced sulfur, as well as sulfur and metals in sulfide minerals can contribute to the supergene enrichment of sulfide ores, and can catalyze the formation of acid mine drainage. Heterotrophic anaerobes, which require organic carbon for their metabolism, catalyze a number of thermodynamically favorable reactions such as Fe-Mn oxyhydroxide reductive dissolution (and the release of sorbed metals to solution) and sulfate reduction. Bacterial sulfate reduction to H S can be very rapid if reactive organic carbon is present and can lead to precipitation of metal sulfides and perhaps increase the solubility of elements such as silver, gold, and arsenic that form stable Me-H S aqueous complexes. Similarly, the bacterial degradation of complex organic compounds such as cellulose and hemicellulose to simpler molecules, such as acetate, oxalate, and citrate, can enhance metal solubility by forming Me organic complexes and cause dissolution of silicate minerals. Bacterially induced mineralization is being used for the bioremediation of metal-contaminated environments. Through similar processes, bacteria may have been important contributors in some sedimentary ore-forming environments and could be important along the low-temperature edges of high-temperature systems such as those that form volcanogenic massive sulfides.

167 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219