scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this study was to understand the relationship between the redox state of iron-based nanoparticles and their cytotoxicity toward a Gram-negative bacterium, Escherichia coli.
Abstract: Iron-based nanoparticles have been proposed for an increasing number of biomedical or environmental applications although in vitro toxicity has been observed. The aim of this study was to understand the relationship between the redox state of iron-based nanoparticles and their cytotoxicity toward a Gram-negative bacterium, Escherichia coli. While chemically stable nanoparticles (γFe2O3) have no apparent cytotoxicity, nanoparticles containing ferrous and, particularly, zerovalent iron are cytotoxic. The cytotoxic effects appear to be associated principally with an oxidative stress as demonstrated using a mutant strain of E. coli completely devoid of superoxide dismutase activity. This stress can result from the generation of reactive oxygen species with the interplay of oxygen with reduced iron species (FeII and/or Fe0) or from the disturbance of the electronic and/or ionic transport chains due to the strong affinity of the nanoparticles for the cell membrane.

511 citations

Journal ArticleDOI
TL;DR: A simple analogy between acid/base catalysis and redox catalysis is presented, and the 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship.
Abstract: This Review draws an analogy between acid–base catalysis and redox catalysis. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Various radical cascades catalysed by the electron are discussed.

510 citations

Journal ArticleDOI
TL;DR: The deleterious effect of the interactions between catechol and the different biomolecules is discussed in the context of the observed toxicities, caused by catechols.
Abstract: Catechols can undergo a variety of chemical reactions. In this review, we particularly focus on complex formations and the redox chemistry of catechols, which play an inportant role in the toxicity of catechols. In the presence of heavy metals, such as iron or copper, stable complexes can be formed. In the presence of oxidizing agents, catechols can be oxidized to semiquinone radicals and in a next step to o-benzoquinones. Heavy metals may catalyse redox reactions in which catechols are involved. Further chemical properties like the acidity constant and the lipophilicity of different catechols are shortly described as well. As a consequence of the chemical properties and the chemical reactions of catechols, many different reactions can occur with biomolecules such as DNA, proteins and membranes, ultimately leading to non-repairable damage. Reactions with nucleic acids such as adduct formation and strand breaks are discussed among others. Interactions with proteins causing protein and enzyme inactivation are described. The membrane-catechol interactions discussed here are lipid peroxidation and uncoupling. The deleterious effect of the interactions between catechols and the different biomolecules is discussed in the context of the observed toxicities, caused by catechols.

508 citations

Journal ArticleDOI
TL;DR: The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine ( pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP) is discussed in light of their application in microbial fuel cells.
Abstract: The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm(-2) (pH 3.3, E(cathode) = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (deltaE = E(anode) - E(cathode)) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm(-2) increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio C(Na+,K+)/C(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.

506 citations

Journal ArticleDOI
TL;DR: In this paper, surface modification of graphite felt with concentrated sulphuric acid has led to dramatic improvement in the electroactivity of this material in the vanadium redox cell.

504 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219