scispace - formally typeset
Search or ask a question
Topic

Redox

About: Redox is a research topic. Over the lifetime, 26853 publications have been published within this topic receiving 862368 citations. The topic is also known as: reduction-oxidation & reduction-oxidation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new understanding of the nature of electrode reactions at graphite paste electrodes has been obtained by studying electron-transfer rates of redox systems under conditions of carefully controlled electrode composition and pretreatment.

265 citations

Journal ArticleDOI
TL;DR: The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides, and a new generation of electrochemical biosensors employs ferrocene derivatives as mediators.
Abstract: The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.

264 citations

Journal ArticleDOI
TL;DR: Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible and have an active site density of 1.92 × 1020 sites per gram with 100% site utilization.
Abstract: Replacing scarce and expensive platinum (Pt) with metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has largely been impeded by the low oxygen reduction reaction activity of M–N–C due to low active site density and site utilization. Herein, we overcome these limits by implementing chemical vapour deposition to synthesize Fe–N–C by flowing iron chloride vapour over a Zn–N–C substrate at 750 °C, leading to high-temperature trans-metalation of Zn–N4 sites into Fe–N4 sites. Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible. As a result, the Fe–N–C catalyst has an active site density of 1.92 × 1020 sites per gram with 100% site utilization. This catalyst delivers an unprecedented oxygen reduction reaction activity of 33 mA cm−2 at 0.90 V (iR-corrected; i, current; R, resistance) in a H2–O2 proton exchange membrane fuel cell at 1.0 bar and 80 °C. Replacing platinum with metal–nitrogen–carbon catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has been impeded by low activity. These limitations have now been overcome by the trans-metalation of Zn–N4 sites into Fe–N4 sites.

264 citations

Journal ArticleDOI
TL;DR: In this article, the molecular structures and reactivity of the group V metal oxides (V 2 O 5, Nb 2 O5 and Ta 2 o 5 ) were compared.

264 citations

Journal ArticleDOI
TL;DR: The activity of a single-site titanium-based lactide polymerization initiator supported by a ferrocenyl-derivatized salen ligand is shown to be modulated by a chemical redox switch, finding a substantially higher rate of propagation for the neutral catalyst compared to its oxidized dicationic ferrocenium counterpart.
Abstract: The activity of a single-site titanium-based lactide polymerization initiator supported by a ferrocenyl-derivatized salen ligand is shown to be modulated by a chemical redox switch; a substantially higher rate of propagation is found for the neutral catalyst compared to its oxidized dicationic ferrocenium counterpart.

264 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Catalysis
400.9K papers, 8.7M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,178
20225,931
20211,509
20201,274
20191,219