scispace - formally typeset
Search or ask a question
Topic

Reeb vector field

About: Reeb vector field is a research topic. Over the lifetime, 254 publications have been published within this topic receiving 4118 citations.


Papers
More filters
Journal ArticleDOI
01 Feb 2011
TL;DR: In this article, a Ricci soliton with a compact contact Ricci homogeneous manifold was shown to be a Sasaki-Einstein manifold, whose potential vector field is the Reeb vector field.
Abstract: A compact contact Ricci soliton (whose potential vector field is the Reeb vector field) is Sasaki–Einstein. A compact contact homogeneous manifold with a Ricci soliton is Sasaki–Einstein.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere and showed that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function.
Abstract: We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with an almost contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the general structure of the AdS 5 / CFT 4 correspondence in type IIB string theory from the perspective of generalized geometry, and showed that the supergravity action restricted to a space of generalized Sasakian structures is simply the contact volume, and that its minimization determines the Reeb vector field for such a solution.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the Chen inequalities for semislant submanifolds in Sasakian space forms were established by using subspaces orthogonal to the Reeb vector field.
Abstract: Chen (1993) established a sharp inequality for the sectional curvature of a submanifold in Riemannian space forms in terms of the scalar curvature and squared mean curvature. The notion of a semislant submanifold of a Sasakian manifold was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez (1999). In the present paper, we establish Chen inequalities for semislant submanifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector field ξ.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider a sub-Riemannian Laplacian with an oriented contact distribution and derive a Birkhoff normal form along this characteristic manifold, thus showing that all 3D contact structures are microlocally equivalent.
Abstract: This is the first paper of a series in which we plan to study spectral asymptotics for sub-Riemannian Laplacians and to extend results that are classical in the Riemannian case concerning Weyl measures, quantum limits, quantum ergodicity, quasi-modes, trace formulae. Even if hypoelliptic operators have been well studied from the point of view of PDE's, global geometrical and dynamical aspects have not been the subject of much attention. As we will see, already in the simplest case, the statements of the results in the sub-Riemannian setting are quite different from those in the Riemannian one. Let us consider a sub-Riemannian (sR) metric on a closed three-dimensional manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We establish a Quantum Ergodicity (QE) theorem for the eigenfunctions of any associated sR Laplacian under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized Popp measure. This is the first time that such a result is established for a hypoelliptic operator, whereas the usual Shnirelman theorem yields QE for the Laplace-Beltrami operator on a closed Riemannian manifold with ergodic geodesic flow. To prove our theorem, we first establish a microlocal Weyl law, which allows us to identify the limit measure and to prove the microlocal concentration of the eigenfunctions on the characteristic manifold of the sR Laplacian. Then, we derive a Birkhoff normal form along this characteristic manifold, thus showing that, in some sense, all 3D contact structures are microlocally equivalent. The quantum version of this normal form provides a useful microlocal factorization of the sR Laplacian. Using the normal form, the factorization and the ergodicity assumption, we finally establish a variance estimate, from which QE follows. We also obtain a second result, which is valid without any ergodicity assumption: every Quantum Limit (QL) can be interpreted as the sum of two mutually singular measures: the first measure is supported on the unit cotangent bundle and is invariant under the sR geodesic flow, and the second measure is supported on the characteristic manifold of the sR Laplacian and is invariant under the lift of the Reeb flow. Moreover, we prove that the first measure is zero for most QL's.

28 citations

Network Information
Related Topics (5)
Manifold
18.7K papers, 362.8K citations
89% related
Symplectic geometry
18.2K papers, 363K citations
85% related
Scalar curvature
12.7K papers, 296K citations
84% related
Differential geometry
10.9K papers, 305K citations
84% related
Holomorphic function
19.6K papers, 287.8K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202126
202028
201918
201813
201721