scispace - formally typeset
Search or ask a question
Topic

Reflection coefficient

About: Reflection coefficient is a research topic. Over the lifetime, 11905 publications have been published within this topic receiving 159891 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of matching an arbitrary load impedance to a pure resistance by means of a reactive network and derived necessary and sufficient conditions for the physical realizability of a function of frequency representing the input reflection coefficient of a matching network terminated in a prescribed load impedance.
Abstract: This paper deals with the general problem of matching an arbitrary load impedance to a pure resistance by means of a reactive network. It consists primarily of a systematic study of the origin and nature of the theoretical limitations on the tolerance and bandwidth of match and of their dependence on the characteristics of the given load impedance. Necessary and sufficient conditions are derived for the physical realizability of a function of frequency representing the input reflection coefficient of a matching network terminated in a prescribed load impedance. These conditions of physical realizability are then transformed into a set of integral relations involving the logarithm of the magnitude of the reflection coefficient. Such relations are particularly suitable for the study of the limitations on the bandwidth and tolerance of match. Definite expressions for these quantities are obtained in special cases. The practical problem of approaching the optimum theoretical tolerance by means of a network with a finite number of elements is also considered. Design curves are provided for a particularly simple but very important type of load impedance. In addition, a very convenient method is presented for computing the values of the elements of the resulting matching network.

852 citations

Journal ArticleDOI
TL;DR: OpenFoam as discussed by the authors is a CFD library for solving free surface Newtonian flows using the Reynolds averaged Navier-Stokes equations coupled with a volume of fluid method.
Abstract: SUMMARY The open-source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam-Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.

852 citations

Journal ArticleDOI
TL;DR: When a spherical mirror interferometer is illuminated by an off-axis ray of light, the repeated reflections cause the ray to trace a path which lies on the surface of a hyperboloid, with the points of reflection on the mirrors on ellipses as mentioned in this paper.
Abstract: When a spherical mirror interferometer is illuminated by an off-axis ray of light, the repeated reflections cause the ray to trace a path which lies on the surface of a hyperboloid, with the points of reflection on the mirrors on ellipses. Under special conditions, these ellipses may become circles, with the points of reflection displaced by an angle 2θ after every round trip. When 2νθ = 2μπ, ν and μ being integers, the rays retrace their paths. These ray paths give rise to additional resonances which were observed. Pictures of the points of reflection are reproduced. The theory is in good agreement with the experimental observations. In laser amplifiers these ray paths enable one to obtain long effective path lengths in the active medium which may be contained in a thin annular cylindrical or hyperboloidal shell.

835 citations

Journal ArticleDOI
TL;DR: A method is described for finding the optical properties of a slab of turbid material by using total reflection, unscattered transmission, and total transmission measurements and the intrinsic error in the method is < 3% when four quadrature points are used.
Abstract: A method is described for finding the optical properties (scattering, absorption, and scattering anisotropy) of a slab of turbid material by using total reflection, unscattered transmission, and total transmission measurements. This method is applicable to homogeneous turbid slabs with any optical thickness, albedo, or phase function. The slab may have a different index of refraction from its surroundings and may or may not be bounded by glass. The optical properties are obtained by iterating an adding–doubling solution of the radiative transport equation until the calculated values of the reflection and transmission match the measured ones. Exhaustive numerical tests show that the intrinsic error in the method is <3% when four quadrature points are used.

766 citations

Journal ArticleDOI
TL;DR: In this article, a rigorous and explicit solution for the problem of sound radiation from an unflanged circular pipe, assuming axially symmetric excitation, was obtained for the wave-length range of dominant mode (plane wave) propagation in the pipe.
Abstract: A rigorous and explicit solution is obtained for the problem of sound radiation from an unflanged circular pipe, assuming axially symmetric excitation. The solution is valid throughout the wave-length range of dominant mode (plane wave) propagation in the pipe. The reflection coefficient for the velocity potential within the pipe and the power-gain function, embodying the characteristics of the radiation pattern, are evaluated numerically. The absorption cross section of the pipe for a plane wave incident from external space, and the gain function for this direction, are found to satisfy a reciprocity relation. In particular, the absorption cross section for normal incidence is just the area of the mouth. At low frequencies of vibration, the velocity potential within the pipe is the same as if the pipe were lengthened by a certain fraction of the radius and the open end behaved as a loop. The exact value of the end correction turns out to be 0.6133.

760 citations


Network Information
Related Topics (5)
Wave propagation
55K papers, 1.1M citations
90% related
Electric field
87.1K papers, 1.4M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Optical fiber
167K papers, 1.8M citations
83% related
Antenna (radio)
208K papers, 1.8M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022551
2021347
2020503
2019555
2018515