scispace - formally typeset
Search or ask a question
Topic

Reflector (antenna)

About: Reflector (antenna) is a research topic. Over the lifetime, 28730 publications have been published within this topic receiving 212618 citations.


Papers
More filters
Patent
17 Mar 2010
TL;DR: In this article, an improved single antenna system that allows reception of RF energy at multiple frequencies is presented, which is capable of providing movement such that the feed horn with the LNB is at a focal point with the primary reflector for both Ka and Ku band reception.
Abstract: The present invention provides an improved single antenna system that allows reception of RF energy at multiple frequencies. In one embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a dual mode feed tube and a switchable LNB that supports both Ka band and Ku band reception. In another embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a feed horn and a LNB that is capable of providing movement such that the feed horn with the LNB is at a focal point with the primary reflector for both Ka and Ku band reception. In another embodiment, the antennae is implemented as a multi-beam, multi-feed antenna having a primary reflected fitted with a feed horn assembly and a switchable LNB that supports both Ka band and Ku band reception.

204 citations

Patent
13 Aug 2003
TL;DR: In this article, a concentrating solar energy receiver comprising a primary parabolic reflector having a center and a high reflectivity surface on a concave side of the reflector and having a focal axis extending from the concave to a focal point of the primary paraboloid reflector, and a conversion module having a reception surface wherein the reception surface is spaced from the focal point by a predetermined distance and disposed to receive a predetermined cross section of radiant solar energy reflected from the polygonal reflector for conversion to electrical energy in the conversion module.
Abstract: There is disclosed herein a concentrating solar energy receiver comprising a primary parabolic reflector having a center and a high reflectivity surface on a concave side of the reflector and having a focal axis extending from the concave side of the reflector and passing through a focal point of the primary parabolic reflector, and a conversion module having a reception surface wherein the reception surface is spaced from the focal point by a predetermined distance and disposed to receive a predetermined cross section of radiant solar energy reflected from the concave side of the primary parabolic reflector for conversion to electrical energy in the conversion module. In one aspect, the conversion module includes a reception surface comprising a planar array of at least one photovoltaic solar cell. In another aspect, the conversion module includes a reception surface coupled to a thermal cycle engine. The mechanical output of the thermal cycle engine drives an electric generator.

203 citations

Patent
21 Oct 1994
TL;DR: In this paper, an antenna array for direction-agile applications, such as r.f. packet mesh networks, employs a plurality of quarter-wave radiators disposed normally to a ground plane on a dielectric backing and switching elements for selecting a desired receiving direction and transmission direction and minimizing interference from signals in opposing directions.
Abstract: An antenna array for direction-agile applications, such as r.f. packet mesh networks, employs a plurality of quarter-wave radiators disposed normally to a ground plane on a dielectric backing and switching elements for selecting a desired receiving direction and transmission direction and minimizing interference from signals in opposing directions. A control system selects and switches direction rapidly enough to receive and transmit digipeating signals in selected different directions using the phasing and switching elements. A specific embodiment employs eight radiators of 0.2625 electrical wavelengths (quarter wave plus 5%) disposed equidistant along a circle within a circular ground plane in a pattern which is 1/4 wavelength from the outer boundary of the ground plane, each radiator being disposed at least 0.15 wavelengths to about 0.25 wavelengths from adjacent radiators in a circular pattern. The antenna is characterized by eight electronically switchable radiating directions (at 45° intervals) with at least 20 dB front to back ratio and a 3 dB beamwidth of 64°. Pairs of radiators form parasitic elements, driven elements and reflectors with spacing selected as a modest compromise from the ideal spacing to allow electronically selectable directionality using identically-spaced elements acting as driven elements, parasitic elements and reflector elements. The driven elements are slightly reactively fed.

203 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of Global Positioning System (GPS) data from two sites separated by a horizontal distance of only ∼2.2 m yielded phase residuals exhibiting a systematic elevation angle dependence.
Abstract: Analysis of Global Positioning System (GPS) data from two sites separated by a horizontal distance of only ∼2.2 m yielded phase residuals exhibiting a systematic elevation angle dependence. One of the two GPS antennas was mounted on an ∼1-m-high concrete pillar, and the other was mounted on a standard wooden tripod. We performed elevation angle cutoff tests with these data and established that the estimate of the vertical coordinate of site position was sensitive to the minimum elevation angle (elevation cutoff) of the data analyzed. For example, the estimate of the vertical coordinate of site position changed by 9.7±0.8 mm when the minimum elevation angle was increased from 10° to 25°. We performed simulations based on a simple (ray tracing) multipath model with a single horizontal reflector which demonstrated that the results from the elevation angle cutoff tests and the pattern of the residuals versus elevation angle could be qualitatively reproduced if the reflector were located 0.1–0.2 m beneath the antenna phase center. We therefore hypothesized that the elevation-angle-dependent error was caused by scattering from the horizontal surface of the pillar, located a distance of ∼0.2 m beneath the antenna phase center. We tested this hypothesis by placing microwave absorbing material between the antenna and the pillar in a number of configurations and by analyzing the changes in apparent position of the antenna. The results indicate that (1) the horizontal surface of the pillar is indeed the main scatterer, (2) both the concrete and the metal plate embedded in the pillar are significant sources of scattering, and (3) the scattering can be reduced greatly by the use of microwave absorbing materials. These results have significant implications for the accuracy of global GPS geodetic tracking networks which use pillar-antenna configurations identical or similar to the one used for this study at the Westford WFRD GPS site.

202 citations

Patent
07 Sep 1995
TL;DR: In this paper, a method and apparatus of inspecting for flaws in a specular reflector, where the flaws having an expected length and the reflector is electrically conductive, is presented.
Abstract: A method and apparatus of inspecting for flaws in a specular reflector, where the flaws having an expected length and the reflector is electrically conductive. The method includes directing a beam of an electromagnetic acoustic transmitting transducer along a beam axis toward the specular reflector for producing a reflected electromagnetic acoustic beam. The transmitted beam has side lobes with zero points therebetween, at least some of the side lobes being major side lobes. The reflected beam is received using an electromagnetic acoustic receiving transmitter set at an angle to the beam axis, the angle being selected to be at one of the zero points and past all of the major lobes of the transmitted beam to eliminate root and crown signals of the weld, in the reflected signal.

201 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021567
2020948
20191,159
20181,092
2017977