Topic

# Regression analysis

About: Regression analysis is a(n) research topic. Over the lifetime, 31027 publication(s) have been published within this topic receiving 1744954 citation(s). The topic is also known as: regression method & regression.

...read more

##### Papers

More filters

••

01 Jan 1973-

Abstract: Offers an applications-oriented approach to multivariate data analysis, focusing on the use of each technique, rather than its mathematical derivation. The text introduces a six-step framework for organizing and discussing techniques with flowcharts for each.
Well-suited for the non-statistician, this applications-oriented introduction to multivariate analysis focuses on the fundamental concepts that affect the use of specific techniques rather than the mathematical derivation of the technique. Provides an overview of several techniques and approaches that are available to analysts today - e.g., data warehousing and data mining, neural networks and resampling/bootstrapping. Chapters are organized to provide a practical, logical progression of the phases of analysis and to group similar types of techniques applicable to most situations.
Table of Contents
1. Introduction.
I. PREPARING FOR A MULTIVARIATE ANALYSIS.
2. Examining Your Data.
3. Factor Analysis.
II. DEPENDENCE TECHNIQUES.
4. Multiple Regression.
5. Multiple Discriminant Analysis and Logistic Regression.
6. Multivariate Analysis of Variance.
7. Conjoint Analysis.
8. Canonical Correlation Analysis.
III. INTERDEPENDENCE TECHNIQUES.
9. Cluster Analysis.
10. Multidimensional Scaling.
IV. ADVANCED AND EMERGING TECHNIQUES.
11. Structural Equation Modeling.
12. Emerging Techniques in Multivariate Analysis.
Appendix A: Applications of Multivariate Data Analysis.
Index.

...read more

37,069 citations

••

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.

...read more

Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

...read more

36,018 citations

••

Abstract: The analysis of censored failure times is considered. It is assumed that on each individual arc available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.

...read more

28,225 citations

•

06 May 2013-

Abstract: I. FUNDAMENTAL CONCEPTS 1. Introduction 1.1. A Scientist in Training 1.2. Questions of Whether, If, How, and When 1.3. Conditional Process Analysis 1.4. Correlation, Causality, and Statistical Modeling 1.5. Statistical Software 1.6. Overview of this Book 1.7. Chapter Summary 2. Simple Linear Regression 2.1. Correlation and Prediction 2.2. The Simple Linear Regression Equation 2.3. Statistical Inference 2.4. Assumptions for Interpretation and Statistical Inference 2.5. Chapter Summary 3. Multiple Linear Regression 3.1. The Multiple Linear Regression Equation 3.2. Partial Association and Statistical Control 3.3. Statistical Inference in Multiple Regression 3.4. Statistical and Conceptual Diagrams 3.5. Chapter Summary II. MEDIATION ANALYSIS 4. The Simple Mediation Model 4.1. The Simple Mediation Model 4.2. Estimation of the Direct, Indirect, and Total Effects of X 4.3. Example with Dichotomous X: The Influence of Presumed Media Influence 4.4. Statistical Inference 4.5. An Example with Continuous X: Economic Stress among Small Business Owners 4.6. Chapter Summary 5. Multiple Mediator Models 5.1. The Parallel Multiple Mediator Model 5.2. Example Using the Presumed Media Influence Study 5.3. Statistical Inference 5.4. The Serial Multiple Mediator Model 5.5. Complementarity and Competition among Mediators 5.6. OLS Regression versus Structural Equation Modeling 5.7. Chapter Summary III. MODERATION ANALYSIS 6. Miscellaneous Topics in Mediation Analysis 6.1. What About Baron and Kenny? 6.2. Confounding and Causal Order 6.3. Effect Size 6.4. Multiple Xs or Ys: Analyze Separately or Simultaneously? 6.5. Reporting a Mediation Analysis 6.6. Chapter Summary 7. Fundamentals of Moderation Analysis 7.1. Conditional and Unconditional Effects 7.2. An Example: Sex Discrimination in the Workplace 7.3. Visualizing Moderation 7.4. Probing an Interaction 7.5. Chapter Summary 8. Extending Moderation Analysis Principles 8.1. Moderation Involving a Dichotomous Moderator 8.2. Interaction between Two Quantitative Variables 8.3. Hierarchical versus Simultaneous Variable Entry 8.4. The Equivalence between Moderated Regression Analysis and a 2 x 2 Factorial Analysis of Variance 8.5. Chapter Summary 9. Miscellaneous Topics in Moderation Analysis 9.1. Truths and Myths about Mean Centering 9.2. The Estimation and Interpretation of Standardized Regression Coefficients in a Moderation Analysis 9.3. Artificial Categorization and Subgroups Analysis 9.4. More Than One Moderator 9.5. Reporting a Moderation Analysis 9.6. Chapter Summary IV. CONDITIONAL PROCESS ANALYSIS 10. Conditional Process Analysis 10.1. Examples of Conditional Process Models in the Literature 10.2. Conditional Direct and Indirect Effects 10.3. Example: Hiding Your Feelings from Your Work Team 10.4. Statistical Inference 10.5. Conditional Process Analysis in PROCESS 10.6. Chapter Summary 11. Further Examples of Conditional Process Analysis 11.1. Revisiting the Sexual Discrimination Study 11.2. Moderation of the Direct and Indirect Effects in a Conditional Process Model 11.3. Visualizing the Direct and Indirect Effects 11.4. Mediated Moderation 11.5. Chapter Summary 12. Miscellaneous Topics in Conditional Process Analysis 12.1. A Strategy for Approaching Your Analysis 12.2. Can a Variable Simultaneously Mediate and Moderate Another Variable's Effect? 12.3. Comparing Conditional Indirect Effects and a Formal Test of Moderated Mediation 12.4. The Pitfalls of Subgroups Analysis 12.5. Writing about Conditional Process Modeling 12.6. Chapter Summary Appendix A. Using PROCESS Appendix B. Monte Carlo Confidence Intervals in SPSS and SAS

...read more

26,130 citations

•

01 Jan 1966-

Abstract: Basic Prerequisite Knowledge. Fitting a Straight Line by Least Squares. Checking the Straight Line Fit. Fitting Straight Lines: Special Topics. Regression in Matrix Terms: Straight Line Case. The General Regression Situation. Extra Sums of Squares and Tests for Several Parameters Being Zero. Serial Correlation in the Residuals and the Durbin--Watson Test. More of Checking Fitted Models. Multiple Regression: Special Topics. Bias in Regression Estimates, and Expected Values of Mean Squares and Sums of Squares. On Worthwhile Regressions, Big F's, and R 2 . Models Containing Functions of the Predictors, Including Polynomial Models. Transformation of the Response Variable. "Dummy" Variables. Selecting the "Best" Regression Equation. Ill--Conditioning in Regression Data. Ridge Regression. Generalized Linear Models (GLIM). Mixture Ingredients as Predictor Variables. The Geometry of Least Squares. More Geometry of Least Squares. Orthogonal Polynomials and Summary Data. Multiple Regression Applied to Analysis of Variance Problems. An Introduction to Nonlinear Estimation. Robust Regression. Resampling Procedures (Bootstrapping). Bibliography. True/False Questions. Answers to Exercises. Tables. Indexes.

...read more

18,934 citations