scispace - formally typeset
Topic

Regulation of gene expression

About: Regulation of gene expression is a(n) research topic. Over the lifetime, 85456 publication(s) have been published within this topic receiving 5832845 citation(s). The topic is also known as: GO:0010468 & gene expression regulation.


Papers
More filters
Journal ArticleDOI
15 Sep 2004-Nature
TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Abstract: MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.

9,301 citations

Journal ArticleDOI
19 Nov 1993-Cell
TL;DR: A gene is identified, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line and that could be an important mediator of p53-dependent tumor growth suppression.
Abstract: The ability of p53 to activate transcription from specific sequences suggests that genes induced by p53 may mediate its biological role as a tumor suppressor. Using a subtractive hybridization approach, we identified a gene, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line. The WAF1 gene was localized to chromosome 6p21.2, and its sequence, structure, and activation by p53 was conserved in rodents. Introduction of WAF1 cDNA suppressed the growth of human brain, lung, and colon tumor cells in culture. Using a yeast enhancer trap, a p53-binding site was identified 2.4 kb upstream of WAF1 coding sequences. The WAF1 promoter, including this p53-binding site, conferred p53-dependent inducibility upon a heterologous reporter gene. These studies define a gene whose expression is directly induced by p53 and that could be an important mediator of p53-dependent tumor growth suppression.

8,173 citations

Journal ArticleDOI
TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Abstract: MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.

5,862 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,377 citations

Journal ArticleDOI
TL;DR: It is shown that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible, suggesting a causal relation among epigenomicState, GR expression and the maternal effect on stress responses in the offspring.
Abstract: Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.

5,199 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
98% related
Gene expression
113.3K papers, 5.5M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene
211.7K papers, 10.3M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202218
20211,831
20202,294
20192,807
20182,945
20173,314