scispace - formally typeset
Search or ask a question

Showing papers on "Regulation of gene expression published in 2016"


Journal ArticleDOI
21 Apr 2016-Cell
TL;DR: It is concluded that transcript levels by themselves are not sufficient to predict protein levels in many scenarios and to thus explain genotype-phenotype relationships and that high-quality data quantifying different levels of gene expression are indispensable for the complete understanding of biological processes.

1,996 citations


Journal ArticleDOI
TL;DR: The results provide evidence that circular RNA produced from precursor mRNA may have a regulatory role in human cells and characterize one abundant circRNA derived from Exon2 of the HIPK3 gene, termed circHIPK3.
Abstract: Circular RNAs (circRNAs) represent a class of widespread and diverse endogenous RNAs that may regulate gene expression in eukaryotes. However, the regulation and function of human circRNAs remain largely unknown. Here we generate ribosomal-depleted RNA sequencing data from six normal tissues and seven cancers, and detect at least 27,000 circRNA candidates. Many of these circRNAs are differently expressed between the normal and cancerous tissues. We further characterize one abundant circRNA derived from Exon2 of the HIPK3 gene, termed circHIPK3. The silencing of circHIPK3 but not HIPK3 mRNA significantly inhibits human cell growth. Via a luciferase screening assay, circHIPK3 is observed to sponge to 9 miRNAs with 18 potential binding sites. Specifically, we show that circHIPK3 directly binds to miR-124 and inhibits miR-124 activity. Our results provide evidence that circular RNA produced from precursor mRNA may have a regulatory role in human cells.

1,537 citations


Journal ArticleDOI
TL;DR: This review focuses on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.
Abstract: MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that function in regulation of gene expression. Compelling evidences have demonstrated that miRNA expression is dysregulated in human cancer through various mechanisms, including amplification or deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. MiRNAs may function as either oncogenes or tumor suppressors under certain conditions. The dysregulated miRNAs have been shown to affect the hallmarks of cancer, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, activating invasion and metastasis, and inducing angiogenesis. An increasing number of studies have identified miRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools, which needs further investigation and validation. In this review, we focus on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.

1,535 citations


Journal ArticleDOI
TL;DR: The data indicate that circRNAs shape gene expression by titrating microRNAs, regulating transcription and interfering with splicing, thus effectively expanding the diversity and complexity of eukaryotic transcriptomes.
Abstract: Circular RNAs (circRNAs) are produced from precursor mRNA (pre-mRNA) back-splicing of thousands of genes in eukaryotes. Although circRNAs are generally expressed at low levels, recent findings have shed new light on their cell type-specific and tissue-specific expression and on the regulation of their biogenesis. Furthermore, the data indicate that circRNAs shape gene expression by titrating microRNAs, regulating transcription and interfering with splicing, thus effectively expanding the diversity and complexity of eukaryotic transcriptomes.

1,241 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β, and establishes a molecular basis for an NRF2-mediated anti-inflammation approach.
Abstract: Nrf2 (NF-E2-related factor-2) transcription factor regulates oxidative/xenobiotic stress response and also represses inflammation. However, the mechanisms how Nrf2 alleviates inflammation are still unclear. Here, we demonstrate that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR analyses revealed that Nrf2 binds to the proximity of these genes in macrophages and inhibits RNA Pol II recruitment. Further, we found that Nrf2-mediated inhibition is independent of the Nrf2-binding motif and reactive oxygen species level. Murine inflammatory models further demonstrated that Nrf2 interferes with IL6 induction and inflammatory phenotypes in vivo. Thus, contrary to the widely accepted view that Nrf2 suppresses inflammation through redox control, we demonstrate here that Nrf2 opposes transcriptional upregulation of proinflammatory cytokine genes. This study identifies Nrf2 as the upstream regulator of cytokine production and establishes a molecular basis for an Nrf2-mediated anti-inflammation approach.

1,069 citations


Journal ArticleDOI
TL;DR: A droplet-based, single-cell RNA-seq method is implemented to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains and provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Abstract: Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.

1,046 citations


Journal ArticleDOI
17 Nov 2016-Nature
TL;DR: Cross-talk among neighbouring genes is a prevalent phenomenon that can involve multiple mechanisms and cis-regulatory signals, including a role for RNA splice sites, and mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs and broadly contribute to the regulation of both coding and non-coding genes.
Abstract: Mammalian genomes are pervasively transcribed to produce thousands of long non-coding RNAs (lncRNAs) A few of these lncRNAs have been shown to recruit regulatory complexes through RNA-protein interactions to influence the expression of nearby genes, and it has been suggested that many other lncRNAs can also act as local regulators Such local functions could explain the observation that lncRNA expression is often correlated with the expression of nearby genes However, these correlations have been challenging to dissect and could alternatively result from processes that are not mediated by the lncRNA transcripts themselves For example, some gene promoters have been proposed to have dual functions as enhancers, and the process of transcription itself may contribute to gene regulation by recruiting activating factors or remodelling nucleosomes Here we use genetic manipulation in mouse cell lines to dissect 12 genomic loci that produce lncRNAs and find that 5 of these loci influence the expression of a neighbouring gene in cis Notably, none of these effects requires the specific lncRNA transcripts themselves and instead involves general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript Furthermore, such effects are not limited to lncRNA loci: we find that four out of six protein-coding loci also influence the expression of a neighbour These results demonstrate that cross-talk among neighbouring genes is a prevalent phenomenon that can involve multiple mechanisms and cis-regulatory signals, including a role for RNA splice sites These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs and broadly contribute to the regulation of both coding and non-coding genes

954 citations


Journal ArticleDOI
TL;DR: It is shown that schizophrenia is polygenic and the utility of this resource of gene expression and its genetic regulation for mechanistic interpretations of genetic liability for brain diseases is highlighted.
Abstract: Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.

907 citations


Journal ArticleDOI
17 Nov 2016-Cell
TL;DR: This work uses promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types and shows that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers.

825 citations


Journal ArticleDOI
02 Jun 2016-Nature
TL;DR: The development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana, establishes a novel mode of optogenetics control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.
Abstract: The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.

815 citations


Journal ArticleDOI
TL;DR: This study provides valuable insights into how CD2AP contributes to LOAD susceptibility and results resulted in a significant increase in extracellular amyloid-B (Ab) levels, which did not appear to be directly related to changes in APP processing.
Abstract: brain. To investigate this, we are characterising the effects of CD2AP knockdown in an in vitro model of the BBB. Methods: Endogenous CD2AP expression was knocked down in H4 and hMEC/D3 cells using siRNA. Knockdown was quantified by western blot and Image J analysis. Levels of APP, Ab, and APP metabolites were quantified using ELISAs. The rate of receptor-mediated endocytosis was measured by a transferrin uptake assay. Co-localisation of CD2AP with APP and endosomal markers was assessed using immunocytochemistry. Transcytosis in hMEC/D3 cells will be assessed using Transwell assays. Results:We observed a significant 30.2760.07 % increase in Ab40 expression (p1⁄40.0046). Expression levels of APP and APP processing metabolites was not significantly altered. Results from our experiments in progress will be made available at AAIC 2016. Conclusions:Knockdown of CD2AP expression resulted in a significant increase in extracellular amyloid-B (Ab) levels, which did not appear to be directly related to changes in APP processing. This study is ongoing and novel data will be presented at AAIC 2016. Overall, our study provides valuable insights into how CD2AP contributes to LOAD susceptibility.

Journal ArticleDOI
04 Mar 2016-Science
TL;DR: It is found that ERVs have shaped the evolution of a transcriptional network underlying the interferon (IFN) response, a major branch of innate immunity, and that lineage-specific ERV have dispersed numerous IFN-inducible enhancers independently in diverse mammalian genomes.
Abstract: Endogenous retroviruses (ERVs) are abundant in mammalian genomes and contain sequences modulating transcription. The impact of ERV propagation on the evolution of gene regulation remains poorly understood. We found that ERVs have shaped the evolution of a transcriptional network underlying the interferon (IFN) response, a major branch of innate immunity, and that lineage-specific ERVs have dispersed numerous IFN-inducible enhancers independently in diverse mammalian genomes. CRISPR-Cas9 deletion of a subset of these ERV elements in the human genome impaired expression of adjacent IFN-induced genes and revealed their involvement in the regulation of essential immune functions, including activation of the AIM2 inflammasome. Although these regulatory sequences likely arose in ancient viruses, they now constitute a dynamic reservoir of IFN-inducible enhancers fueling genetic innovation in mammalian immune defenses.

Journal ArticleDOI
02 Dec 2016-Science
TL;DR: The accessible chromatin landscape in exhausted CD8+ T cells is defined and shown that it is distinct from functional memory CD8 + T cells, suggesting that exhausted T cells are a distinct lineage.
Abstract: Exhausted T cells in cancer and chronic viral infection express distinctive patterns of genes, including sustained expression of programmed cell death protein 1 (PD-1) However, the regulation of gene expression in exhausted T cells is poorly understood Here, we define the accessible chromatin landscape in exhausted CD8+ T cells and show that it is distinct from functional memory CD8+ T cells Exhausted CD8+ T cells in humans and a mouse model of chronic viral infection acquire a state-specific epigenetic landscape organized into functional modules of enhancers Genome editing shows that PD-1 expression is regulated in part by an exhaustion-specific enhancer that contains essential RAR, T-bet, and Sox3 motifs Functional enhancer maps may offer targets for genome editing that alter gene expression preferentially in exhausted CD8+ T cells

Journal ArticleDOI
TL;DR: HBV-related HCCs may arise on non-cirrhotic livers, further supporting the notion that HBV plays a direct role in liver transformation by triggering both common and etiology specific oncogenic pathways in addition to stimulating the host immune response and driving liver chronic necro-inflammation.

Journal ArticleDOI
TL;DR: Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function, which are enriched in the brain and increase in abundance during fetal development.

Journal ArticleDOI
TL;DR: It is found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2).
Abstract: Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.

Journal ArticleDOI
25 Aug 2016-Blood
TL;DR: Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation as well as estimating absolute messenger RNA levels per cell.

Journal ArticleDOI
TL;DR: This review takes a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development.
Abstract: DNA methylation is known to be abnormal in all forms of cancer, but it is not really understood how this occurs and what is its role in tumorigenesis. In this review, we take a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development. Aberrant DNA methylation in cancer can be generated either prior to or following cell transformation through mutations. Increasing evidence suggests, however, that most methylation changes are generated in a programmed manner and occur in a subpopulation of tissue cells during normal aging, probably predisposing them for tumorigenesis. It is likely that this methylation contributes to the tumor state by inhibiting the plasticity of cell differentiation processes. Cancer Res; 76(12); 3446-50. ©2016 AACR.

Journal ArticleDOI
29 Apr 2016-Science
TL;DR: This study quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs), and provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.
Abstract: Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.

Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: Post-mortem genome-wide transcriptome analysis of the largest cohort of samples analysed so far, to the knowledge, interrogate the noncoding transcriptome, alternative splicing, and upstream molecular regulators to broaden the understanding of molecular convergence in ASD.
Abstract: Autism spectrum disorder (ASD) involves substantial genetic contributions. These contributions are profoundly heterogeneous but may converge on common pathways that are not yet well understood. Here, through post-mortem genome-wide transcriptome analysis of the largest cohort of samples analysed so far, to our knowledge, we interrogate the noncoding transcriptome, alternative splicing, and upstream molecular regulators to broaden our understanding of molecular convergence in ASD. Our analysis reveals ASD-associated dysregulation of primate-specific long noncoding RNAs (lncRNAs), downregulation of the alternative splicing of activity-dependent neuron-specific exons, and attenuation of normal differences in gene expression between the frontal and temporal lobes. Our data suggest that SOX5, a transcription factor involved in neuron fate specification, contributes to this reduction in regional differences. We further demonstrate that a genetically defined subtype of ASD, chromosome 15q11.2-13.1 duplication syndrome (dup15q), shares the core transcriptomic signature observed in idiopathic ASD. Co-expression network analysis reveals that individuals with ASD show age-related changes in the trajectory of microglial and synaptic function over the first two decades, and suggests that genetic risk for ASD may influence changes in regional cortical gene expression. Our findings illustrate how diverse genetic perturbations can lead to phenotypic convergence at multiple biological levels in a complex neuropsychiatric disorder.

Journal ArticleDOI
21 Apr 2016-Nature
TL;DR: N6-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms, and constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.
Abstract: It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young ( 6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.

Book ChapterDOI
TL;DR: This chapter introduces several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action.
Abstract: One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action.

Journal ArticleDOI
27 Oct 2016-Nature
TL;DR: High-resolution 3D maps of chromatin contacts during human corticogenesis are generated, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease.
Abstract: Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a tissue-specific manner. However, the 3D organization of chromosomes during human brain development and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease. Our analyses identify hundreds of genes that physically interact with enhancers gained on the human lineage, many of which are under purifying selection and associated with human cognitive function. We integrate chromatin contacts with non-coding variants identified in schizophrenia genome-wide association studies (GWAS), highlighting multiple candidate schizophrenia risk genes and pathways, including transcription factors involved in neurogenesis, and cholinergic signalling molecules, several of which are supported by independent expression quantitative trait loci and gene expression analyses. Genome editing in human neural progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, supporting its potential role as a schizophrenia risk gene. This work provides a framework for understanding the effect of non-coding regulatory elements on human brain development and the evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders.

Journal ArticleDOI
TL;DR: The results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer, and identify a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis.
Abstract: TP53, also known as p53, is one of the most commonly mutated genes in cancer (1). It is critical in regulating cell division, apoptosis, senescence, and DNA damage and repair (2–4). p53 is also important for modulating the immune response (5–9). However, whether p53 is involved in tumor immune evasion is poorly understood. This topic is particularly relevant for several reasons, among them evidence linking microRNAs (miRNAs), p53, and adaptive and innate immunity (6,10). For instance, several p53-regulated miRNAs have been implicated in adaptive and innate immunity, including the miR-17~92 cluster (11), miR-145 (12), and let-7 (13). Importantly, p53 can regulate tumor cell recognition by natural killer (NK) cells via the p53-regulated miRNA miR-34a (10). We recently showed that the miR-200 family, another miRNA family regulated by p53 (14), directly regulates PDL1 (programmed death 1 ligand 1; also known as B7-H1 or CD274) (15). PDL1 is overexpressed in many human cancers, including non–small cell lung cancer (NSCLC) (16–18), promoting T-cell tolerance and escape host immunity (19). Early clinical trials using monoclonal antibodies that block the PD1/PDL1 interaction have shown promise in some patients with advanced cancer (20,21). Here, we investigated the potential role of p53 in regulating PDL1 expression in NSCLC. We found that p53 regulates PDL1 via miR-34 by using a series of experiments involving lung cancer cell lines, miRNA target-predicting databases, and tissue samples from patients with NSCLC. Using a syngeneic mouse model of lung cancer, we demonstrated that MRX34, a liposomal formulation complexed with miR-34a mimics that is currently the subject of a phase I clinical cancer trial (22–24), alone or in combination with radiotherapy (XRT), reduced PDL1 expression in the tumor and antagonized T-cell exhaustion.

Journal ArticleDOI
TL;DR: The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.
Abstract: Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.

Journal Article
TL;DR: The discovery of extensive transcription of long noncoding RNAs (lncRNAs) provide an important new perspective on the centrality of RNA in gene regulation as mentioned in this paper, and they discuss genome-scale strategies to
Abstract: The discovery of extensive transcription of long noncoding RNAs (lncRNAs) provide an important new perspective on the centrality of RNA in gene regulation I will discuss genome-scale strategies to

Journal ArticleDOI
TL;DR: Emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization are discussed.
Abstract: Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus

Journal ArticleDOI
TL;DR: The results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.
Abstract: Zea mays is an important genetic model for elucidating transcriptional networks. Uncertainties about the complete structure of mRNA transcripts limit the progress of research in this system. Here, using single-molecule sequencing technology, we produce 111,151 transcripts from 6 tissues capturing ∼70% of the genes annotated in maize RefGen_v3 genome. A large proportion of transcripts (57%) represent novel, sometimes tissue-specific, isoforms of known genes and 3% correspond to novel gene loci. In other cases, the identified transcripts have improved existing gene models. Averaging across all six tissues, 90% of the splice junctions are supported by short reads from matched tissues. In addition, we identified a large number of novel long non-coding RNAs and fusion transcripts and found that DNA methylation plays an important role in generating various isoforms. Our results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.

Journal ArticleDOI
TL;DR: A comprehensive transcriptional analysis of 460 early-stage urothelial carcinomas revealed frequent mutations in genes encoding proteins involved in chromatin organization and cytoskeletal functions and suggested the identification of subclasses in NMIBC may offer better prognostication and treatment selection based on subclass assignment.

Journal ArticleDOI
TL;DR: The features that characterize circular RNAs are reviewed, putative circular RNA biogenesis pathways are discussed as well as the uncovered functions of circular RNA are reviewed.