scispace - formally typeset
Search or ask a question

Showing papers on "Regulation of gene expression published in 2021"


Journal ArticleDOI
TL;DR: A review of the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications is presented in this article.
Abstract: Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.

1,630 citations


Journal ArticleDOI
TL;DR: The regulation of gene expression by coding and non-coding RNA is introduced and both established and emerging roles for RNAs in cancer are discussed, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer.
Abstract: While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.

582 citations


Journal ArticleDOI
Urmo Võsa1, Annique Claringbould2, Annique Claringbould3, Harm-Jan Westra1, Marc Jan Bonder1, Patrick Deelen, Biao Zeng4, Holger Kirsten5, Ashis Saha6, Roman Kreuzhuber7, Roman Kreuzhuber3, Roman Kreuzhuber8, Seyhan Yazar9, Harm Brugge1, Roy Oelen1, Dylan H. de Vries1, Monique G. P. van der Wijst1, Silva Kasela10, Natalia Pervjakova10, Isabel Alves11, Marie-Julie Favé11, Mawusse Agbessi11, Mark W. Christiansen12, Rick Jansen13, Ilkka Seppälä, Lin Tong14, Alexander Teumer15, Katharina Schramm16, Gibran Hemani17, Joost Verlouw18, Hanieh Yaghootkar19, Hanieh Yaghootkar20, Hanieh Yaghootkar21, Reyhan Sönmez Flitman22, Reyhan Sönmez Flitman23, Andrew A. Brown24, Andrew A. Brown25, Viktorija Kukushkina10, Anette Kalnapenkis10, Sina Rüeger22, Eleonora Porcu22, Jaanika Kronberg10, Johannes Kettunen, Bernett Lee26, Futao Zhang27, Ting Qi27, Jose Alquicira Hernandez9, Wibowo Arindrarto28, Frank Beutner5, Peter A C 't Hoen29, Joyce B. J. van Meurs18, Jenny van Dongen13, Maarten van Iterson28, Morris A. Swertz, Julia Dmitrieva30, Mahmoud Elansary30, Benjamin P. Fairfax31, Michel Georges30, Bastiaan T. Heijmans28, Alex W. Hewitt32, Mika Kähönen, Yungil Kim33, Yungil Kim6, Julian C. Knight31, Peter Kovacs5, Knut Krohn5, Shuang Li1, Markus Loeffler5, Urko M. Marigorta4, Urko M. Marigorta34, Hailang Mei28, Yukihide Momozawa30, Martina Müller-Nurasyid16, Matthias Nauck15, Michel G. Nivard35, Brenda W.J.H. Penninx13, Jonathan K. Pritchard36, Olli T. Raitakari37, Olli T. Raitakari38, Olaf Rötzschke26, Eline Slagboom28, Coen D.A. Stehouwer39, Michael Stumvoll5, Patrick F. Sullivan40, Joachim Thiery5, Anke Tönjes5, Jan H. Veldink41, Uwe Völker15, Robert Warmerdam1, Cisca Wijmenga1, Morris Swertz, Anand Kumar Andiappan26, Grant W. Montgomery27, Samuli Ripatti42, Markus Perola43, Zoltán Kutalik22, Emmanouil T. Dermitzakis23, Emmanouil T. Dermitzakis25, Sven Bergmann22, Sven Bergmann23, Timothy M. Frayling19, Holger Prokisch44, Habibul Ahsan14, Brandon L. Pierce14, Terho Lehtimäki, Dorret I. Boomsma13, Bruce M. Psaty12, Sina A. Gharib12, Philip Awadalla11, Lili Milani10, Willem H. Ouwehand45, Willem H. Ouwehand7, Willem H. Ouwehand8, Kate Downes7, Kate Downes8, Oliver Stegle3, Oliver Stegle46, Alexis Battle6, Peter M. Visscher27, Jian Yang47, Jian Yang27, Markus Scholz5, Joseph E. Powell48, Joseph E. Powell9, Greg Gibson4, Tõnu Esko10, Lude Franke1 
TL;DR: In this article, the authors performed cis-and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium.
Abstract: Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.

344 citations


Journal ArticleDOI
TL;DR: The role of m6-methyladenosine (m6 A) in post-transcriptional gene expression regulation is discussed in this article, where the authors highlight advances in the understanding of the m6 A deposition on mRNA and its context-dependent effects on mRNA decay and translation.
Abstract: RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6 -methyladenosine (m6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre-mRNA processing, nuclear export, decay, and translation. The importance of m6 A methylation as a mode of post-transcriptional gene expression regulation is evident in the crucial roles m6 A-mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6 A deposition on mRNA and its context-dependent effects on mRNA decay and translation, the role of m6 A methylation of non-coding chromosomal-associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6 A regulators in disease.

215 citations


Journal ArticleDOI
TL;DR: ASAP-seq as discussed by the authors uses a bridging approach that repurposes antibody:oligonucleotide conjugates designed for existing technologies that pair protein measurements with single-cell RNA sequencing.
Abstract: Recent technological advances have enabled massively parallel chromatin profiling with scATAC-seq (single-cell assay for transposase accessible chromatin by sequencing). Here we present ATAC with select antigen profiling by sequencing (ASAP-seq), a tool to simultaneously profile accessible chromatin and protein levels. Our approach pairs sparse scATAC-seq data with robust detection of hundreds of cell surface and intracellular protein markers and optional capture of mitochondrial DNA for clonal tracking, capturing three distinct modalities in single cells. ASAP-seq uses a bridging approach that repurposes antibody:oligonucleotide conjugates designed for existing technologies that pair protein measurements with single-cell RNA sequencing. Together with DOGMA-seq, an adaptation of CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) for measuring gene activity across the central dogma of gene regulation, we demonstrate the utility of systematic multi-omic profiling by revealing coordinated and distinct changes in chromatin, RNA and surface proteins during native hematopoietic differentiation and peripheral blood mononuclear cell stimulation and as a combinatorial decoder and reporter of multiplexed perturbations in primary T cells.

165 citations


Journal ArticleDOI
TL;DR: In this paper, the authors combine the CUT&Tag technology, developed to measure bulk histone modifications, with droplet-based singlecell library preparation to produce high-quality single-cell data on chromatin modifications.
Abstract: In contrast to single-cell approaches for measuring gene expression and DNA accessibility, single-cell methods for analyzing histone modifications are limited by low sensitivity and throughput. Here, we combine the CUT&Tag technology, developed to measure bulk histone modifications, with droplet-based single-cell library preparation to produce high-quality single-cell data on chromatin modifications. We apply single-cell CUT&Tag (scCUT&Tag) to tens of thousands of cells of the mouse central nervous system and probe histone modifications characteristic of active promoters, enhancers and gene bodies (H3K4me3, H3K27ac and H3K36me3) and inactive regions (H3K27me3). These scCUT&Tag profiles were sufficient to determine cell identity and deconvolute regulatory principles such as promoter bivalency, spreading of H3K4me3 and promoter-enhancer connectivity. We also used scCUT&Tag to investigate the single-cell chromatin occupancy of transcription factor OLIG2 and the cohesin complex component RAD21. Our results indicate that analysis of histone modifications and transcription factor occupancy at single-cell resolution provides unique insights into epigenomic landscapes in the central nervous system.

156 citations


Journal ArticleDOI
16 Sep 2021-Cell
TL;DR: In this paper, the activity of gene-regulatory elements was mapped to identify genomic regions crucial to corticogenesis, generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly.

137 citations


Journal ArticleDOI
TL;DR: It is discussed new technologies that can extend the standard regulatory mapping framework to more diverse, disease-relevant cell types and states and suggest an alternative strategy drawing on the dynamic and highly context-specific nature of gene regulation.

134 citations


Journal ArticleDOI
14 Jan 2021-Nature
TL;DR: The data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments and establish H1 as a bona fide tumour suppressor, and mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.
Abstract: Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B–E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes. Mutations in histone H1 induce the remodelling of chromatin architecture to a more relaxed state, which leads to malignant transformation through changes in histone modifications and the expression of stem cell genes.

134 citations


Journal ArticleDOI
11 Nov 2021-Cell
TL;DR: In this paper, the spatial organization of RNA and DNA in the nucleus has been comprehensively mapped to reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation.

134 citations


Journal ArticleDOI
TL;DR: The results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease.
Abstract: N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/β-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.

Journal ArticleDOI
TL;DR: In this paper, the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells were investigated, and the results of their study showed that CTC binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.
Abstract: The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.

Journal ArticleDOI
TL;DR: This Review discusses the relationship between genome structure and gene regulation, with a focus on whether genome organization has an instructive role or largely reflects the activity of regulatory elements.
Abstract: Precise patterns of gene expression in metazoans are controlled by three classes of regulatory elements: promoters, enhancers and boundary elements. During differentiation and development, these elements form specific interactions in dynamic higher-order chromatin structures. However, the relationship between genome structure and its function in gene regulation is not completely understood. Here we review recent progress in this field and discuss whether genome structure plays an instructive role in regulating gene expression or is a reflection of the activity of the regulatory elements of the genome.

Journal ArticleDOI
TL;DR: In this paper, the role of histone lactylation in tumorigenesis remains unclear, but it is shown that histone Lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma.
Abstract: Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.

Journal ArticleDOI
TL;DR: Paired-Tag as discussed by the authors was used to profile five histone modifications jointly with transcriptome in the adult mouse frontal cortex and hippocampus to produce cell-type-resolved maps of chromatin state and transcriptome.
Abstract: Genome-wide profiling of histone modifications can reveal not only the location and activity state of regulatory elements, but also the regulatory mechanisms involved in cell-type-specific gene expression during development and disease pathology. Conventional assays to profile histone modifications in bulk tissues lack single-cell resolution. Here we describe an ultra-high-throughput method, Paired-Tag, for joint profiling of histone modifications and transcriptome in single cells to produce cell-type-resolved maps of chromatin state and transcriptome in complex tissues. We used this method to profile five histone modifications jointly with transcriptome in the adult mouse frontal cortex and hippocampus. Integrative analysis of the resulting maps identified distinct groups of genes subject to divergent epigenetic regulatory mechanisms. Our single-cell multiomics approach enables comprehensive analysis of chromatin state and gene regulation in complex tissues and characterization of gene regulatory programs in the constituent cell types.

Journal ArticleDOI
TL;DR: A review of the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals can be found in this paper, where the authors discuss and contextualize emerging principles.
Abstract: Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.

Journal ArticleDOI
TL;DR: The mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution are discussed and the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA Transport and local protein synthesis are discussed.
Abstract: Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.

Journal ArticleDOI
22 Jan 2021-Science
TL;DR: In this paper, JARID2 and AEBP2 bound to a H2AK119ub1-containing nucleosome reveal a bridge helix in EZH2 that connects the SET domain, H3 tail, and nucleosomal DNA.
Abstract: Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) cooperate to determine cell identity by epigenetic gene expression regulation. However, the mechanism of PRC2 recruitment by means of recognition of PRC1-mediated H2AK119ub1 remains poorly understood. Our PRC2 cryo-electron microscopy structure with cofactors JARID2 and AEBP2 bound to a H2AK119ub1-containing nucleosome reveals a bridge helix in EZH2 that connects the SET domain, H3 tail, and nucleosomal DNA. JARID2 and AEBP2 each interact with one ubiquitin and the H2A-H2B surface. JARID2 stimulates PRC2 through interactions with both the polycomb protein EED and the H2AK119-ubiquitin, whereas AEBP2 has an additional scaffolding role. The presence of these cofactors partially overcomes the inhibitory effect that H3K4me3 and H3K36me3 exert on core PRC2 (in the absence of cofactors). Our results support a key role for JARID2 and AEBP2 in the cross-talk between histone modifications and PRC2 activity.

Journal ArticleDOI
TL;DR: This Review focuses on two families of Trithorax group proteins: COMPASS histone H3 lysine 4 methyltransferase complexes and SWI/SNF chromatin remodelling complexes and discusses the roles of these complexes in gene regulation, development and disease.
Abstract: The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG — the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes — regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies. In this Review, Cenik and Shilatifard focus on two families of Trithorax group proteins: COMPASS histone H3 lysine 4 methyltransferase complexes and SWI/SNF chromatin remodelling complexes. They discuss the roles of these complexes in gene regulation, development and disease.


Journal ArticleDOI
TL;DR: In this article, the authors profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution and reveal key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells.
Abstract: Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development.

Journal ArticleDOI
19 Feb 2021-Science
TL;DR: Examining B. subtilis transcriptional patterns revealed that a small fraction of cells grown in laboratory medium express a myo-inositol catabolism pathway, thus highlighting how microSPLiT can identify rare cellular states.
Abstract: Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.

Journal ArticleDOI
TL;DR: The role of miRNAs in the regulation of glucose and lipid metabolism is discussed in this paper, where the role of extracellular vesicles in systemic metabolic control and potential biomarkers of metabolic status and metabolic disease are discussed.
Abstract: In animals, systemic control of metabolism is conducted by metabolic tissues and relies on the regulated circulation of a plethora of molecules, such as hormones and lipoprotein complexes. MicroRNAs (miRNAs) are a family of post-transcriptional gene repressors that are present throughout the animal kingdom and have been widely associated with the regulation of gene expression in various contexts, including virtually all aspects of systemic control of metabolism. Here we focus on glucose and lipid metabolism and review current knowledge of the role of miRNAs in their systemic regulation. We survey miRNA-mediated regulation of healthy metabolism as well as the contribution of miRNAs to metabolic dysfunction in disease, particularly diabetes, obesity and liver disease. Although most miRNAs act on the tissue they are produced in, it is now well established that miRNAs can also circulate in bodily fluids, including their intercellular transport by extracellular vesicles, and we discuss the role of such extracellular miRNAs in systemic metabolic control and as potential biomarkers of metabolic status and metabolic disease.

Journal ArticleDOI
TL;DR: In this article, the authors discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours.
Abstract: Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.

Journal ArticleDOI
TL;DR: In this article, the formation of G-quadruplex (G4) secondary structures in gene promoters was first linked to the regulation of gene expression, and a model that placed these non-canonical DNA structures as repressors of transcription by preventing polymerase processivity was proposed.
Abstract: It has been >20 years since the formation of G-quadruplex (G4) secondary structures in gene promoters was first linked to the regulation of gene expression. Since then, the development of small molecules to selectively target G4s and their cellular application have contributed to an improved understanding of how G4s regulate transcription. One model that arose from this work placed these non-canonical DNA structures as repressors of transcription by preventing polymerase processivity. Although a considerable number of studies have recently provided sufficient evidence to reconsider this simplistic model, there is still a misrepresentation of G4s as transcriptional roadblocks. In this review, we will challenge this model depicting G4s as simple 'off switches' for gene expression by articulating how their formation has the potential to alter gene expression at many different levels, acting as a key regulatory element perturbing the nature of epigenetic marks and chromatin architecture.

Journal ArticleDOI
TL;DR: The relationship between chromatin conformation and gene regulation remains unclear as mentioned in this paper, and it is uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organisation facilitate cell-type-specific activation of gene expression.
Abstract: The relationship between chromatin organization and gene regulation remains unclear While disruption of chromatin domains and domain boundaries can lead to misexpression of developmental genes, acute depletion of regulators of genome organization has a relatively small effect on gene expression It is therefore uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organization facilitate cell-type-specific activation of gene expression Here, using the dorsoventral patterning of the Drosophila melanogaster embryo as a model system, we provide evidence for the independence of chromatin organization and dorsoventral gene expression We define tissue-specific enhancers and link them to expression patterns using single-cell RNA-seq Surprisingly, despite tissue-specific chromatin states and gene expression, chromatin organization is largely maintained across tissues Our results indicate that tissue-specific chromatin conformation is not necessary for tissue-specific gene expression but rather acts as a scaffold facilitating gene expression when enhancers become active

Journal ArticleDOI
TL;DR: In this paper, the development of the chicken heart from the early to late four-chambered heart stage was studied using single-cell RNA sequencing and spatial transcriptomics with algorithms for data integration.
Abstract: Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis.

Journal ArticleDOI
17 Nov 2021-Nature
TL;DR: In this article, an extension of genome architecture mapping (GAM) was developed to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals.
Abstract: The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1–3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4–6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions. A new technique called immunoGAM, which combines genome architecture mapping (GAM) with immunoselection, enabled the discovery of specialized chromatin conformations linked to gene expression in specific cell populations from mouse brain tissues.

Journal ArticleDOI
TL;DR: In this paper, gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery was profiled using expression quantitative trait loci (eQTL) mapping.
Abstract: Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease.

Journal ArticleDOI
TL;DR: In this article, a massive dataset for Arabidopsis thaliana, PastDB, was generated, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses.
Abstract: Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.