scispace - formally typeset
Search or ask a question
Topic

Regulation of gene expression

About: Regulation of gene expression is a research topic. Over the lifetime, 85456 publications have been published within this topic receiving 5832845 citations. The topic is also known as: GO:0010468 & gene expression regulation.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is provided that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure as well as changes in gene expression comparable to the failing heart.
Abstract: Background— Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure. Methods and Results— Cardiac transcriptome analyses revealed striking similarities between fetal and failing human heart tissue. Using microRNA arrays, we discovered profound alterations of microRNA expression in failing hearts. These changes closely mimicked the microRNA expression pattern observed in fetal cardiac tissue. Bioinformatic analysis demonstrated a striking concordance between regulated messenger RNA expression in heart failure and the presence of microRNA binding sites in the respective 3′ untranslated regions. Messenger RNAs upregulated in the failing heart contained preferentially binding sites for downregulated microRNAs and vice versa. Mechani...

880 citations

Journal ArticleDOI
TL;DR: Schizophrenia and bipolar brains showed downregulation of key oligodendrocyte and myelination genes, including transcription factors that regulate these genes, compared with control brains, which lends support to the notion that the disorders share common causative and pathophysiological pathways.

880 citations

Journal ArticleDOI
TL;DR: Analyses of gene networks showed that activation of AP-1 transcription factors in this newly identified HCC subtype might have key roles in tumor development.
Abstract: The variability in the prognosis of individuals with hepatocellular carcinoma (HCC) suggests that HCC may comprise several distinct biological phenotypes. These phenotypes may result from activation of different oncogenic pathways during tumorigenesis and/or from a different cell of origin. Here we address whether the transcriptional characteristics of HCC can provide insight into the cellular origin of the tumor. We integrated gene expression data from rat fetal hepatoblasts and adult hepatocytes with HCC from human and mouse models. Individuals with HCC who shared a gene expression pattern with fetal hepatoblasts had a poor prognosis. The gene expression program that distinguished this subtype from other types of HCC included markers of hepatic oval cells, suggesting that HCC of this subtype may arise from hepatic progenitor cells. Analyses of gene networks showed that activation of AP-1 transcription factors in this newly identified HCC subtype might have key roles in tumor development.

879 citations

Journal ArticleDOI
21 Jul 1994-Nature
TL;DR: The results indicate that p53 either represses genes necessary for cell survival or is a component of the enzymatic machinery for apoptotic cleav-age or repair of DNA5.
Abstract: The tumour suppressor p53 is required to induce programmed cell death (apoptosis) by DNA-damaging agents. As p53 is a transcriptional activator that mediates gene induction after DNA damage, it has been proposed to be a genetic switch that activates apoptosis-mediator genes. Here we evaluate the role of p53 in DNA-damage-induced apoptosis by establishing derivatives of GHFT1 cells, that are somatotropic progenitors immortalized by expression of SV40 T-antigen, which express a temperature-sensitive p53 mutant. In these cells induction of apoptosis by DNA damage depends strictly on p53 function. A shift to the permissive temperature triggers apoptosis following DNA damage, but this is independent of new RNA or protein synthesis. The extent of apoptotic DNA cleavage is directly proportional to the period during which p53 is functional. These results do not support the proposal that p53 is an activator of apoptosis-mediator genes but rather indicate that p53 either represses genes necessary for cell survival or is a component of the enzymatic machinery for apoptotic cleavage or repair of DNA.

879 citations

Journal ArticleDOI
TL;DR: The cloning of the fourth major murine homeogene complex, HOX‐5.3, shows that the expression of murine Antp‐like homeobox‐containing genes along the antero‐posterior developing body axis follows a positional hierarchy which reflects their respective physical positions within the HOX clusters, similar to that which is found for the Drosophila homeotic genes.
Abstract: This paper reports the cloning of the fourth major murine homeogene complex, HOX-5. The partial characterization of this gene cluster revealed the presence of two novel genes (Hox-5.2, Hox-5.3) located at the 5' extremity of this complex. In situ hybridization experiments showed that these two genes are transcribed in very posterior domains during embryonic and foetal development. We also show that Hox-1.6, the gene located at the 3' most position in the HOX-1 complex, has a very anterior expression boundary during early development. These results clearly support the recently proposed hypothesis that the expression of murine Antp-like homeobox-containing genes along the antero-posterior developing body axis follows a positional hierarchy which reflects their respective physical positions within the HOX clusters, similar to that which is found for the Drosophila homeotic genes. Such a structural and functional organization is likely conserved in most vertebrates. Moreover, on the basis of sequence comparisons, we propose that the ordering of homeobox-containing genes within clusters has been conserved between Drosophila and the house mouse. Thus, very different body plans might be achieved, both in insects and vertebrates, by evolutionarily conserved gene networks possibly displaying similar regulatory interactions.

876 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
98% related
Gene expression
113.3K papers, 5.5M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene
211.7K papers, 10.3M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023194
2022520
20211,835
20202,294
20192,807
20182,945