scispace - formally typeset
Search or ask a question
Topic

Regulation of gene expression

About: Regulation of gene expression is a research topic. Over the lifetime, 85456 publications have been published within this topic receiving 5832845 citations. The topic is also known as: GO:0010468 & gene expression regulation.


Papers
More filters
Journal ArticleDOI
23 Sep 2005-Science
TL;DR: Noise terminology is summarized and comment on recent investigations into the sources, consequences, and control of noise in gene expression are commented on.
Abstract: Genetically identical cells and organisms exhibit remarkable diversity even when they have identical histories of environmental exposure. Noise, or variation, in the process of gene expression may contribute to this phenotypic variability. Recent studies suggest that this noise has multiple sources, including the stochastic or inherently random nature of the biochemical reactions of gene expression. In this review, we summarize noise terminology and comment on recent investigations into the sources, consequences, and control of noise in gene expression.

1,742 citations

Journal ArticleDOI
TL;DR: The results demonstrate the usefulness of oligonucleotide arrays in monitoring mammalian gene expression on a broad and unprecedented scale and provide insights into the basic mechanisms of IFN actions.
Abstract: The pleiotropic activities of interferons (IFNs) are mediated primarily through the transcriptional regulation of many downstream effector genes. The mRNA profiles from IFN-α, -β, or -γ treatments of the human fibrosarcoma cell line, HT1080, were determined by using oligonucleotide arrays with probe sets corresponding to more than 6,800 human genes. Among these were transcripts for known IFN-stimulated genes (ISGs), the expression of which were consistent with previous studies in which the particular ISG was characterized as responsive to either Type I (α, β) or Type II (γ) IFNs, or both. Importantly, many novel IFN-stimulated genes were identified that were diverse in their known biological functions. For instance, several novel ISGs were identified that are implicated in apoptosis (including RAP46/Bag-1, phospholipid scramblase, and hypoxia inducible factor-1α). Furthermore, several IFN-repressed genes also were identified. These results demonstrate the usefulness of oligonucleotide arrays in monitoring mammalian gene expression on a broad and unprecedented scale. In particular, these findings provide insights into the basic mechanisms of IFN actions and ultimately may contribute to better therapeutic uses for IFNs.

1,740 citations

Journal ArticleDOI
27 Oct 2011-Nature
TL;DR: The results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.
Abstract: Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.

1,737 citations

Journal ArticleDOI
TL;DR: A hydrodynamics-based procedure for expressing transgenes in mice by systemic administration of plasmid DNA is developed and which can be used as an effective means for studying gene function, gene regulation and molecular pathophysiology through gene transfer, as well as for expressing proteins in animals.
Abstract: Development of methods that allow an efficient expression of exogenous genes in animals would provide tools for gene function studies, treatment of diseases and for obtaining gene products. Therefore, we have developed a hydrodynamics-based procedure for expressing transgenes in mice by systemic administration of plasmid DNA. Using cDNA of luciferase and beta-galactosidase as a reporter gene, we demonstrated that an efficient gene transfer and expression can be achieved by a rapid injection of a large volume of DNA solution into animals via the tail vein. Among the organs expressing the transgene, the liver showed the highest level of gene expression. As high as 45 microg of luciferase protein per gram of liver can be achi- eved by a single tail vein injection of 5 microg of plasmid DNA into a mouse. Histochemical analysis using beta-galactosidase gene as a reporter reveals that approximately 40percent of hepatocytes express the transgene. The time-response curve shows that the level of transgene expression in the liver reaches the peak level in approximately 8 h after injection and decreases thereafter. The peak level of gene expression can be regained by repeated injection of plasmid DNA. These results suggest that a simple, convenient and efficient method has been developed and which can be used as an effective means for studying gene function, gene regulation and molecular pathophysiology through gene transfer, as well as for expressing proteins in animals.

1,732 citations

Journal ArticleDOI
TL;DR: The results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise.
Abstract: Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise.

1,728 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
98% related
Gene expression
113.3K papers, 5.5M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene
211.7K papers, 10.3M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023194
2022520
20211,835
20202,294
20192,807
20182,945