scispace - formally typeset
Search or ask a question
Topic

Relativistic quantum chemistry

About: Relativistic quantum chemistry is a research topic. Over the lifetime, 5455 publications have been published within this topic receiving 166985 citations.


Papers
More filters
Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

Journal ArticleDOI
TL;DR: In this article, potential-dependent transformations are used to transform the four-component Dirac Hamiltonian to effective two-component regular Hamiltonians, which already contain the most important relativistic effects, including spin-orbit coupling.
Abstract: In this paper, potential‐dependent transformations are used to transform the four‐component Dirac Hamiltonian to effective two‐component regular Hamiltonians. To zeroth order, the expansions give second order differential equations (just like the Schrodinger equation), which already contain the most important relativistic effects, including spin–orbit coupling. One of the zero order Hamiltonians is identical to the one obtained earlier by Chang, Pelissier, and Durand [Phys. Scr. 34, 394 (1986)]. Self‐consistent all‐electron and frozen‐core calculations are performed as well as first order perturbation calculations for the case of the uranium atom using these Hamiltonians. They give very accurate results, especially for the one‐electron energies and densities of the valence orbitals.

3,585 citations

Journal ArticleDOI

2,580 citations

Journal ArticleDOI
TL;DR: It is found that correlation contribution and relativistic effects are nonadditive in the MRD-CI method.
Abstract: A no-pair formalism employing external-field projection operators correct to second order in the potential is used to calculate the 1s energies of one-electron atoms and ground-state properties of the bromine and silver atoms in the framework of the multireference double-excitation configuration-interaction (MRD-CI) method. It is found that the relativistic two-component method that has been used reproduces the one-particle energies of the Dirac equation to order (Z\ensuremath{\alpha}${)}^{3}$. The operator is bounded from below and can be used variationally in relativistic electron-structure calculations of many-electron atoms and molecules. The relativistic correction to the total energy recovers 97% of the relativistic correction of the Dirac-Hartree-Fock (DHF) result in the case of the bromine atom and more than 99% in the case of the silver atom. The relativistic correction of the ionization potential of silver has been calculated to be 0.47 eV at the CI level, in good agreement with DHF results, the correlation contribution in the relativistic case being 0.42 eV. The remaining discrepancy of the absolute value of 6.85 eV (DHF 6.34 eV) to experiment (7.57 eV) is attributed to basis-set deficiencies. The corresponding CI value of the electron affinity (relativistic CI value 1.05 eV, nonrelativistic 0.90 eV) is in much better agreement with experiment (1.30 eV). It is found that correlation contribution and relativistic effects are nonadditive.

2,112 citations

Journal ArticleDOI
TL;DR: In this paper, the energy gradients in the zeroth order regular approximation (ZORA) to the Dirac equation were derived for the transition metal complexes W(CO), Os(CO)5, and Pt (CO)4.
Abstract: Analytical expressions are derived for the evaluation of energy gradients in the zeroth order regular approximation (ZORA) to the Dirac equation. The electrostatic shift approximation is used to avoid gauge dependence problems. Comparison is made to the quasirelativistic Pauli method, the limitations of which are highlighted. The structures and first metal-carbonyl bond dissociation energies for the transition metal complexes W(CO)6, Os(CO)5, and Pt(CO)4 are calculated, and basis set effects are investigated.

2,055 citations


Network Information
Related Topics (5)
Excited state
102.2K papers, 2.2M citations
90% related
Ground state
70K papers, 1.5M citations
89% related
Electron
111.1K papers, 2.1M citations
88% related
Ab initio
57.3K papers, 1.6M citations
85% related
Spectroscopy
71.3K papers, 1.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202342
2022112
2021123
2020174
2019134
2018124