scispace - formally typeset
Search or ask a question
Topic

Relativistic quantum chemistry

About: Relativistic quantum chemistry is a research topic. Over the lifetime, 5455 publications have been published within this topic receiving 166985 citations.


Papers
More filters
01 Jan 2013
TL;DR: In this paper, the ab initio quasirelativistic Hartree-Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions is used to derive transition data for a multicharged tungsten ion.
Abstract: a b s t r a c t The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions is used to derive transition data for a multicharged tungsten ion. The configuration interaction method is applied to include electron correlation effects. The relativistic effects are taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes and Lande gfactors are calculated for the 4p 6 4d 2 , 4p 6 4d4f, and 4p 5 4d 3 configurations of the ion W 36+ . The transition wavelengths, spontaneous transition probabilities, oscillator strengths, and line strengths for the electric dipole, electric quadrupole, electric octupole, and magnetic dipole transitions among the levels of these configurations are tabulated.

1,704 citations

Journal ArticleDOI
TL;DR: MOLCAS as discussed by the authors is a package for calculations of electronic and structural properties of molecular systems in gas, liquid, or solid phase, which contains a number of modern quantum chemical methods for studies of the electronic structure in ground and excited electronic states.

1,678 citations

Journal ArticleDOI
TL;DR: The theoretical interpretation of the aurophilic attraction is discussed in detail and a large body of appropriate calculations now exist and their main conclusions are summarized.
Abstract: Gold is an element whose unique properties are strongly influenced by relativistic effects. A large body of appropriate calculations now exist and their main conclusions are summarized. The theoretical interpretation of the aurophilic attraction is discussed in detail.

1,633 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: Relativistic gravitational collapse equations assuming spherical symmetry, adiabatic flow and pressure gradient forces were proposed in this paper, where spherical symmetry was assumed to be a function of the density.
Abstract: Relativistic gravitational collapse equations assuming spherical symmetry, adiabatic flow and pressure gradient forces

1,442 citations


Network Information
Related Topics (5)
Excited state
102.2K papers, 2.2M citations
90% related
Ground state
70K papers, 1.5M citations
89% related
Electron
111.1K papers, 2.1M citations
88% related
Ab initio
57.3K papers, 1.6M citations
85% related
Spectroscopy
71.3K papers, 1.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202342
2022112
2021123
2020174
2019134
2018124