scispace - formally typeset
Search or ask a question

Showing papers on "Relaxation (NMR) published in 2005"


Journal ArticleDOI
TL;DR: The development of a synthetically controlled magnetic nanocrystal model system that correlates the nanoscale tunabilities in terms of size, magnetism, and induced nuclear spin relaxation processes led to the development of high-performance Nanocrystal-antibody probe systems for the diagnosis of breast cancer cells via magnetic resonance imaging.
Abstract: Since the use of magnetic nanocrystals as probes for biomedical system is attractive, it is important to develop optimal synthetic protocols for high-quality magnetic nanocrystals and to have the systematic understanding of their nanoscale properties. Here we present the development of a synthetically controlled magnetic nanocrystal model system that correlates the nanoscale tunabilities in terms of size, magnetism, and induced nuclear spin relaxation processes. This system further led to the development of high-performance nanocrystal−antibody probe systems for the diagnosis of breast cancer cells via magnetic resonance imaging.

1,123 citations


Journal ArticleDOI
TL;DR: An analytic expression for numerical simulations of time- and frequency-resolved 2D photon echo signals is obtained and it is found that there are two noncascading exciton energy relaxation pathways.
Abstract: A theoretical description of femtosecond two-dimensional electronic spectroscopy of multichromophoric systems is presented. Applying the stationary phase approximation to the calculation of photon echo spectra and taking into account exciton relaxation processes, we obtain an analytic expression for numerical simulations of time- and frequency-resolved 2D photon echo signals. The delocalization of one-exciton states, spatial overlaps between the probability densities of different excitonic states, and their influences on both one- and two-dimensional electronic spectra are studied. The nature of the off-diagonal cross-peaks and the time evolution of both diagonal and off-diagonal peak amplitudes are discussed in detail by comparing experimentally measured and theoretically simulated 2D spectra of the natural Fenna−Matthews−Olson (FMO) photosynthetic light-harvesting complex. We find that there are two noncascading exciton energy relaxation pathways.

436 citations


Journal ArticleDOI
TL;DR: In this paper, an angle-resolved magneto-photoluminescence microscope was developed to investigate the anisotropic electron-spin interactions of single nitrogen-vacancy (N-V) centers at room temperature.
Abstract: Experiments on single nitrogen–vacancy (N–V) centres in diamond, which include electron spin resonance1, Rabi oscillations2, single-shot spin readout3 and two-qubit operations with a nearby13C nuclear spin4, show the potential of this spin system for solid-state quantum information processing. Moreover, N–V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature5. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N–V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring ‘dark’ nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

411 citations


Journal ArticleDOI
TL;DR: A new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension is illustrated by combining ac susceptibility and dc susceptibility measurements of a cyano-bridged trinuclear compound.
Abstract: The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.

402 citations


Journal ArticleDOI
TL;DR: In this article, a simple model of a noninteracting nanoparticle system (a superparamagnet) analytically as well as ferritin and a dense superspin glass was studied experimentally.
Abstract: Many dense magnetic nanoparticle systems exhibit slow dynamics which is qualitatively indistinguishable from that observed in atomic spin glasses and its origin is attributed to dipole interactions among particle moments (or superspins). However, even in dilute nanoparticle systems where the dipole interactions are vanishingly small, slow dynamics is observed and is attributed solely to a broad distribution of relaxation times which in turn comes from that of the anisotropy energy barriers. To clarify characteristic differences between the two types of slow dynamics, we study a simple model of a noninteracting nanoparticle system (a superparamagnet) analytically as well as ferritin (a superparamagnet) and a dense ${\mathrm{Fe}}_{3}\mathrm{N}$ nanoparticle system (a superspin glass) experimentally. It is found that superparamagnets in fact show aging (a waiting time dependence) of the thermoremanent magnetization as well as various memory effects. We also find some dynamical phenomena peculiar only to superspin glasses such as the flatness of the field-cooled magnetization below the critical temperature and memory effects in the zero-field-cooled magnetization. These dynamical phenomena are qualitatively reproduced by the random energy model, and are well interpreted by the so-called droplet theory in the field of spin-glass study.

327 citations


Journal ArticleDOI
TL;DR: A correlation of features along the line T(1) = 4T(2) provides strong supportive evidence for the surface diffusion model of (1)H nuclear spin relaxation in cements and for a multimodal discrete pore size distribution.
Abstract: We report the first nuclear magnetic resonance NMR two-dimensional correlation T1-T2 and T2-T2 measurements of hydrating cement pastes. A small but distinct cross peak in the two-dimensional relaxation spectrum provides the first direct evidence of chemical exchange of water between gel and capillary pores occurring over the first 14 days of hydration. A correlation of features along the line T1=4T2 provides strong supportive evidence for the surface diffusion model of 1 H nuclear spin relaxation in cements and for a multimodal discrete pore size distribution. Differences in detail of the results are reported for white cement paste and white cement paste with added silica fume. Both the method and the theory presented can be applied more widely to other high surface area materials with other reactive surface areas.

291 citations


Journal ArticleDOI
TL;DR: This work uses femtosecond mid-infrared pump-probe spectroscopy to study the orientational relaxation of HDO molecules dissolved in H2O and model the effects of heating and correct for these effects to obtain a reliable anisotropy decay.
Abstract: We use femtosecond mid-infrared pump-probe spectroscopy to study the orientational relaxation of HDO molecules dissolved in H2O. In order to obtain a reliable anisotropy decay we model the effects of heating and correct for these effects. We have measured the reorientation time constant of the OD vibration from 2430 to 2600 cm(-1), and observe a value of 2.5 ps that shows no variation over this frequency interval. Our results are discussed in the context of previous experiments that have been performed on the complementary system of HDO dissolved in D2O.

243 citations


Journal ArticleDOI
TL;DR: This efficient electron spin relaxation mechanism in semiconductor InAs/GaAs quantum dots can be suppressed by an external magnetic field as small as 100 mT.
Abstract: We have studied the electron spin relaxation in semiconductor InAs/GaAs quantum dots by time-resolved optical spectroscopy. The average spin polarization of the electrons in an ensemble of p-doped quantum dots decays down to 1/3 of its initial value with a characteristic time T(Delta) approximately 500 ps, which is attributed to the hyperfine interaction with randomly oriented nuclear spins. We show that this efficient electron spin relaxation mechanism can be suppressed by an external magnetic field as small as 100 mT.

213 citations


Journal ArticleDOI
TL;DR: It is an unlikely result that the dispersion of the structural relaxation would be uniquely defined by taualpha, but the shape of the alpha-relaxation function depends only on the relaxation time.
Abstract: Upon decreasing temperature or increasing pressure, a noncrystallizing liquid will vitrify; that is, the structural relaxation time, τα, becomes so long that the system cannot attain an equilibrium configuration in the available time. Theories, including the well-known free volume and configurational entropy models, explain the glass transition by invoking a single quantity that governs the structural relaxation time. The dispersion of the structural relaxation (i.e., the structural relaxation function) is either not addressed or is derived as a parallel consequence (or afterthought) and thus is independent of τα. In these models the time dependence of the relaxation bears no fundamental relationship to the value of τα or other dynamic properties. Such approaches appear to be incompatible with a general experimental fact recently discovered in glass-formers: for a given material at a fixed value of τα, the dispersion is constant, independent of thermodynamic conditions (T and P); that is, the shape of th...

212 citations


Journal ArticleDOI
TL;DR: In this paper, the electrical properties of disordered perovskite-like ceramics in a wide temperature range were investigated by using the x-ray diffraction analysis.
Abstract: Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the x-ray diffraction analysis it was found that the newly obtained (Na0.75Bi0.25) (Mn0.25Nb0.75)O3 ceramics consist of two chemically different phases. The major perovskite one has an orthorhombic structure described by the Pbcm space group (No 57, in yxz setting). The minor phase shows an orthorhombic symmetry, all-face-centred lattice F, with the lattice parameters a = 10.797(4) A, b = 7.601(3) A and c = 7.691(3) A. The electric modulus M* formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the e*(ω) representation. In the ceramics studied, the relaxation times are thermally activated and the dipole process has a clearly non-Debye behaviour. The relaxation process described with the use of the activation energy of approximately 0.4 eV and the characteristic relaxation time, τ0 = 1 × 10−11 s, was found to be related to oxygen vacancies. The low frequency relaxation shows Debye behaviour with a slightly lower activation energy and a longer characteristic time.

210 citations


Journal ArticleDOI
TL;DR: It is found that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5, and it is suggested that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third.
Abstract: We have used the ring polymer molecular-dynamics method to study the translational and orientational motions in an extended simple point charge model of liquid water under ambient conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third. We then go on to consider the system-size scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the limit of infinite system size increases D by a further factor of around 1.3 over the value obtained from a simulation of a system containing 216 water molecules. These findings are discussed in light of the widespread use of classical molecular-dynamics simulations of this sort of size to model the dynamics of aqueous systems.

Journal ArticleDOI
TL;DR: The observed aging dynamics is described using a modified Kohlrausch-Williams-Watts law taking into account the variation of the relaxation time during aging, leading to values for the aging relaxation time and stretching exponent fully consistent with the results from equilibrium measurements performed at higher temperatures.
Abstract: We present time-dependent dielectric loss data for various glass formers below the glass temperature. The observed aging dynamics is described using a modified Kohlrausch-Williams-Watts law taking into account the variation of the relaxation time during aging. It leads to values for the aging relaxation time and stretching exponent, fully consistent with the results from equilibrium measurements performed at higher temperatures. Irrespective of the dynamic process prevailing in the investigated frequency region, the aging dynamics is always determined by the structural relaxation process.

Journal ArticleDOI
TL;DR: In this article, the interface-induced magnetization damping of thin ferromagnetic films in contact with normal-metal layers is calculated from first principles for clean and disordered Fe/Au and Co/Cu interfaces.
Abstract: The interface-induced magnetization damping of thin ferromagnetic films in contact with normal-metal layers is calculated from first principles for clean and disordered Fe/Au and Co/Cu interfaces. Interference effects arising from coherent scattering turn out to be very small, consistent with a very small magnetic coherence length. Because the mixing conductances which govern the spin transfer are to a good approximation real-valued, the spin pumping can be described by an increased Gilbert damping factor but an unmodified gyromagnetic ratio. The results also confirm that the spin-current-induced magnetization torque is an interface effect.

Journal ArticleDOI
TL;DR: In this article, the electrical conductivity of NaNO3-xAl2O3 composites has been studied over a wide range of temperature and frequency by means of impedance spectroscopy.
Abstract: The electrical conductivity of NaNO3–xAl2O3 composites has been studied over the wide range of temperature and frequency by means of impedance spectroscopy. The real part of the frequency dependent conductivity exhibits a simple power law feature and the dimensionless frequency exponent n has been determined. The conductivity spectra show scaling behaviour when the conductivity spectra are scaled by σdcT, where T is temperature in Kelvin. The real part of dielectric permittivity shows saturation at higher frequencies and a strong dispersion at lower frequencies. The imaginary part of permittivity varies inversely with frequency, due to the presence of dc conductivity. The frequency dependent plots of M″ and Z″ show that the conductivity relaxation is non-Debye in nature. The Kohlrausch-Williams-Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. The conductivity relaxation time has been estimated from the modulus spectra. The activation energy responsible for relaxation has been evaluated and it was found to be almost same as that of dc conductivity.

Journal ArticleDOI
TL;DR: The detailed theory of an experiment which uses magnetic field cycling to observe slow singlet relaxation is provided, using a model of intramolecular dipole-dipole couplings and fluctuating external random fields.
Abstract: We have recently demonstrated the existence of exceptionally long-lived nuclear spin states in solution-state nuclear magnetic resonance The lifetime of nuclear spin singlet states in systems containing coupled pairs of spins-1∕2 may exceed the conventional relaxation time constant T1 by more than an order of magnitude These long lifetimes may be observed if the long-lived singlet states are prevented from mixing with rapidly relaxing triplet states In this paper we provide the detailed theory of an experiment which uses magnetic field cycling to observe slow singlet relaxation An approximate expression is given for the magnetic field dependence of the singlet relaxation rate constant, using a model of intramolecular dipole-dipole couplings and fluctuating external random fields

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent advances in magnetic fluid rheology and flows including extensions of the governing magnetization relaxation and ferrohydrodynamic equations with a viscous stress tensor that has an antisymmetric part due to spin velocity.
Abstract: Major recent advances Magnetic fluid rheology and flow advances in the past year include: (1) generalization of the magnetization relaxation equation by Shliomis and Felderhof and generalization of the governing ferrohydrodynamic equations by Rosensweig and Felderhof; (2) advances in such biomedical applications as drug delivery, hyperthermia, and magnetic resonance imaging; (3) use of the antisymmetric part of the viscous stress tensor due to spin velocity to lower the effective magnetoviscosity to zero and negative values; (4) and ultrasound velocity profile measurements of spin-up flow showing counter-rotating surface and co-rotating volume flows in a uniform rotating magnetic field. Recent advances in magnetic fluid rheology and flows are reviewed including extensions of the governing magnetization relaxation and ferrohydrodynamic equations with a viscous stress tensor that has an antisymmetric part due to spin velocity; derivation of the magnetic susceptibility tensor in a ferrofluid with spin velocity and its relationship to magnetically controlled heating; magnetic force and torque analysis, measurements, resulting flow phenomena, with device and biomedical applications; effective magnetoviscosity analysis and measurements including zero and negative values, not just reduced viscosity; ultrasound velocity profile measurements of spin-up flow showing counter-rotating surface and co-rotating volume flows in a uniform rotating magnetic field; theory and optical measurements of ferrofluid meniscus shape for tangential and perpendicular magnetic fields; new theory and measurements of ferrohydrodynamic flows and instabilities and of thermodiffusion (Soret effect) phenomena.

Journal ArticleDOI
TL;DR: The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations and the interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates.
Abstract: The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations. Long trajectories of a large system have been generated and quantities such as the self-diffusion coefficient of ions, shear viscosity, and ionic conductivity have been calculated. Interestingly, the diffusion of the heavier cation is found to be faster than the anion, in agreement with experiment. The interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates. Analysis of the latter calculations points to correlated ion motions in this melt. The solvation time correlation function for dipolar and ionic probes studied using equilibrium simulations exhibits three time components, which include an ultrafast (subpicosecond) part as well as one with a time constant of around 150 ps. The ultrafast solvent relaxation is ascribed to the rattling of anions in their cage, while the slow component could be related to the reorientation of the cations as well as to ion diffusion.

Journal ArticleDOI
TL;DR: The structure, the surface bonding, and the energetics of alkanethiols adsorbed on Cu(111, Ag(111), and Au(111) surfaces were studied under low and high coverages to elucidate the effect of thiols on the surface diffusion of gold.
Abstract: The structure, the surface bonding, and the energetics of alkanethiols adsorbed on Cu(111), Ag(111), and Au(111) surfaces were studied under low and high coverages. The potential energy surfaces (PES) for the thiol/metal interaction were investigated in the absence and presence of externally applied electric fields in order to simulate the effect of the electrode potential on the surface bonding. The electric field affects the corrugation of the PES which decreases for negative fields and increases for positive fields. In the structural investigation, we considered the relaxation of the adsorbate and the surface. The highest relaxation in a direction perpendicular to the surface was observed for gold atoms, whereas silver atoms presented the highest relaxation in a plane parallel to the surface. The surface relaxation is more important in the low coverage limit. The surface bonding was investigated by means of the total and projected density of states analysis. The highest ionic character was observed on ...

Journal ArticleDOI
TL;DR: An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware.
Abstract: An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine (1)H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo (1)H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality.

Journal ArticleDOI
TL;DR: The thermodynamic and dynamical properties of an Ising model with both short-range and long-range, mean-field-like, interactions are studied within the microcanonical ensemble and it is found that the relaxation time of thermodynamically unstable states diverges logarithmically with system size.
Abstract: The thermodynamic and dynamical properties of an Ising model with both short-range and long-range, mean-field-like, interactions are studied within the microcanonical ensemble. It is found that the relaxation time of thermodynamically unstable states diverges logarithmically with system size. This is in contrast with the case of short-range interactions where this time is finite. Moreover, at sufficiently low energies, gaps in the magnetization interval may develop to which no microscopic configuration corresponds. As a result, in local microcanonical dynamics the system cannot move across the gap, leading to breaking of ergodicity even in finite systems. These are general features of systems with long-range interactions and are expected to be valid even when the interaction is slowly decaying with distance.

Journal ArticleDOI
TL;DR: The model dynamical behavior of the solvent between two nanoscopic hydrophobic solutes departs from usual Brownian behavior, reminiscent of the behavior of water in the vicinity of protein surface clefts or trapped between two domains of a protein.
Abstract: We describe the model dynamical behavior of the solvent between two nanoscopic hydrophobic solutes. The dynamics of the vicinal water in various sized traps is found to be significantly different from bulk behavior. We consider the dynamics at normal temperature and pressure at three intersolute distances corresponding to the three solvent separated minima in the free energy profile between the solutes with attractions. These three states correspond to one, two, and three intervening layers of water molecules. Results are obtained from a molecular dynamics simulation at constant temperature and pressure (NPT) ensemble. Translational diffusion of water molecules trapped between the two solutes has been analyzed from the velocity correlation function as well as from the mean square displacement of the water molecules. The rotational behavior has been analyzed through the reorientational dynamics of the dipole moment vector of the water molecule by calculating both first and second rank dipole-dipole correlation functions. Both the translational and reorientational mobilities of water are found to be much slower at the smaller separation and increases as the separation between solutes becomes larger. The occupation time distribution functions calculated from the trajectories also show that the relaxation is much slower for the smallest intersolute separation as compared to other wider separations. The sublinear trend in mean square displacement and the stretched exponential decay of the relaxation of dipolar correlation and occupation distribution function indicate that the dynamical behavior of water in the confined region between two large hydrophobic solutes departs from usual Brownian behavior. This behavior is reminiscent of the behavior of water in the vicinity of protein surface clefts or trapped between two domains of a protein.

Journal ArticleDOI
TL;DR: Branched nanocrystal heterostructures synthesized from CdSe and CdTe exhibit a type II band structure alignment that induces separation of charge upon photoexcitation and localizes carriers to different regions of the tetrahedral geometry.
Abstract: Branched nanocrystal heterostructures synthesized from CdSe and CdTe exhibit a type II band structure alignment that induces separation of charge upon photoexcitation and localizes carriers to different regions of the tetrahedral geometry The dynamics of carrier relaxation examined with femtosecond pump-probe spectroscopy showed heterostructures having rise times and biexponential decays longer than those of nanorods with similar dimensions This is attributed to weaker interactions with surface states and nonradiative relaxation channels afforded by the type II alignment

Journal ArticleDOI
TL;DR: The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy.
Abstract: The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF4]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions.

Journal ArticleDOI
TL;DR: This review focuses on the calorimetric investigation of the structural relaxation of drugs and excipients, and discusses the difficulties in the experimental evaluation of the relaxation time by those methods.

Posted Content
TL;DR: Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with Delta(tau)/k(B) = 47 K and tau(0) = 7 x 10(-)(11) s.
Abstract: Four discrete MnIII/MnII tetra-nuclear complexes with double-cuboidal core were synthesized. dc magnetic measurements show that both Mn2+ - Mn3+ and Mn3+ - Mn3+ magnetic interactions are ferromagnetic in three samples leading to an S = 9 ground state for the Mn4 unit. Furthermore, these complexes are Single-Molecule Magnets (SMMs) clearly showing both thermally activated and ground state tunneling regimes. Slight changes in the [Mn4] core geometry result in an S = 1 ground state in fourth sample. A one-dimensional assembly of [Mn4] units was obtained in the same synthetic conditions with the subsequent addition of NaN3. Double chair-like N3- bridges connect identical [Mn4] units into a chain arrangement. This material behaves as an Ising assembly of S = 9 tetramers weakly antiferromagnetically coupled. Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with 47 K and tau_0 = 7x10^-11 s. The observation of this original thermally activated relaxation process is induced by finite-size effects and in particular by the non-compensation of spins in segments of odd-number units. Generalizing the known theories on the dynamic properties of poly-disperse finite segments of antiferromagnetically coupled Ising spins, the theoretical expression of the characteristic energy gaps were estimated and successfully compared to the experimental values.

Posted Content
TL;DR: In this paper, a simple phenomenological model was proposed in which the system evolves through a hierarchy of energy barriers, which separates the coexisting phases, and calculated magnetization curves using this model reproduce all the qualitative features of the experimental data.
Abstract: Detailed magnetization measurements in La_{5/8-y}Pr_{y}Ca_{3/8} MnO_{3}, including magnetic relaxation properties, demonstrate the dynamic nature of the phase separated state in manganites. The difference between the field-cooled-cooling and zero-field-cooled magnetization curves signals the existence in the latter of blocked metastable states separated by high energy barriers. Results of the magnetic viscosity show that the system becomes unblocked in a certain temperature window, where large relaxation rates are observed. We propose a simple phenomenological model in which the system evolves through a hierarchy of energy barriers, which separates the coexisting phases. The calculated magnetization curves using this model reproduce all the qualitative features of the experimental data. The overall results allowed us to construct an H-T phase diagram, where frozen and dynamical phase separation regions are clearly distinguished.

Journal ArticleDOI
TL;DR: In this paper, the spin-orbit splitting of the electron levels in a two-dimensional quantum dot in a perpendicular magnetic field is studied, and it is shown that at the point of an accidental degeneracy of the two lowest levels above the ground state, the Rashba spinorbit coupling leads to a level anticrossing and to mixing of spin-up and spindown states, whereas there is no mixing of these levels due to the Dresselhaus term.
Abstract: The spin-orbit splitting of the electron levels in a two-dimensional quantum dot in a perpendicular magnetic field is studied. It is shown that at the point of an accidental degeneracy of the two lowest levels above the ground state the Rashba spin-orbit coupling leads to a level anticrossing and to mixing of spin-up and spindown states, whereas there is no mixing of these levels due to the Dresselhaus term. We calculate the relaxation and decoherence times of the three lowest levels due to phonons. We find that the spin relaxation rate as a function of a magnetic field exhibits a cusplike structure for Rashba but not for Dresselhaus spin-orbit interaction.

Journal ArticleDOI
TL;DR: This work investigates from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact using benzene sandwiched between two Au leads as a model system using a combined density functional theory and Green function technique.
Abstract: Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a resonance peak near the Fermi energy from the lowest energy unoccupied molecular orbital. In the nonequilibrium properties, the resonance peak manifests itself in a negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.

Journal ArticleDOI
TL;DR: Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87} Rb atoms contained in vapor cells with alkane anti-relaxation coatings.
Abstract: Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

Book ChapterDOI
TL;DR: In this paper, the relation between macroscopic, observable properties of nuclear spins and their microscopic counterparts is clarified and the first place on the phenomenon of paramagnetic relaxation enhancement and mentions recent theoretical developments in the neighboring fields.
Abstract: Publisher Summary This chapter focuses on the first place on the phenomenon of paramagnetic relaxation enhancement and mentions recent theoretical developments in the neighboring fields. The first issue that needs to be clarified is the relation between macroscopic, observable properties of nuclear spins, and their microscopic counterparts. In solutions of transition metal ions or complexes, one can commonly consider a situation where the ligands carrying nuclear spins can reside in two types of environment: in the coordination sphere of the paramagnetic metal ion or in the bulk. If the ligand contains only one type of magnetic nuclei or if interactions between nuclear spins can be disregarded, each of the two sites can be characterized by nuclear spin–lattice and spin–spin relaxation times, T 1 and T 2 , respectively.