scispace - formally typeset
Search or ask a question

Showing papers on "Relaxation (NMR) published in 2015"


Journal ArticleDOI
TL;DR: A survey of radical ligand-containing single-molecule magnets can be found in this article, with a brief overview of other classes of metal-ligand radical complexes that could be exploited in the design of new single molecule magnet.

450 citations


Journal ArticleDOI
TL;DR: In this article, the 1H and 13C NMR spectra in methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br and Cl) were used to refine some single crystal X-ray and neutron diffraction data to probe their unusual structures.
Abstract: The 1H and 13C NMR spectra in methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br and Cl) show that the CH3NH3+ units undergo dynamic reorientation, as the organic component tumbles in the perovskite cage. In addition, the differences in the anomalously long relaxation times of the protons associated with the CH3 and not the NH3 groups indicate that only the amine end of the CH3NH3+ group is interacting with the inorganic network. Using this information, we have refined some single crystal X-ray and neutron diffraction data to probe their unusual structures in more detail. Furthermore, impedance spectroscopy has been used to monitor the high-temperature phase transition of CH3NH3PbI3, which confirms a significant increase in conductivity, when it is in its high temperature and higher symmetry structural regime. The optical band-gaps of each halide perovskite were determined using UV-visible spectroscopy and are consistent with previous reports.

251 citations


Journal ArticleDOI
TL;DR: It is shown that isonicotinic acid N-oxide (HINO) serves as the linker in the formation of a metal-organic framework featuring Dy2 single-molecule magnets as nodes, and guest solvent exchange induces a reversible single-crystal to single- crystal transformation between the phases Dy2(INO)4(NO3)2⋅2 solvent.
Abstract: Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three-dimensional array. Herein, we show that isonicotinic acid N-oxide (HINO) serves as the linker in the formation of a metal-organic framework featuring Dy2 single-molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single-crystal to single-crystal transformation between the phases Dy2(INO)4(NO3)2⋅2 solvent (solvent=DMF (Dy2-DMF), CH3CN (Dy2-CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2-DMF and 76 cm(-1) for Dy2-CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude.

246 citations


Journal ArticleDOI
TL;DR: In this paper, phonon induced electronic dynamics in the ground and excited states of the negatively charged silicon-vacancy center in diamond were investigated for the temperature range 4 K?350 K. The ground state orbital relaxation rates were measured using time-resolved fluorescence techniques.
Abstract: We investigate phonon induced electronic dynamics in the ground and excited states of the negatively charged silicon-vacancy () centre in diamond. Optical transition line widths, transition wavelength and excited state lifetimes are measured for the temperature range 4 K?350 K. The ground state orbital relaxation rates are measured using time-resolved fluorescence techniques. A microscopic model of the thermal broadening in the excited and ground states of the centre is developed. A vibronic process involving single-phonon transitions is found to determine orbital relaxation rates for both the ground and the excited states at cryogenic temperatures. We discuss the implications of our findings for coherence of qubits in the ground states and propose methods to extend coherence times of qubits.

215 citations


Journal ArticleDOI
TL;DR: In this article, the rotational dynamics of CH3NH3PbI3 and the associated dipole were investigated using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis.
Abstract: Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3(+) cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3(+) cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327 K) and tetragonal (165 K < T < 327 K) phases, the CH3NH3(+) ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in the orthorhombic phase (T < 165 K) only C3 rotation is present. At around room temperature, the characteristic relaxation times for the C4 rotation are found to be τC4 ≈ 5 ps while for the C3 rotation τC3 ≈ 1 ps. The T-dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3(+) and the associated dipole have important implications for understanding the low exciton binding energy and a slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance.

193 citations


Journal ArticleDOI
TL;DR: These methods – paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange – allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable.
Abstract: Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.

182 citations


Journal ArticleDOI
TL;DR: Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion.
Abstract: Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the DyIII ion results in a new relaxation mechanism, hitherto unknown for mononuclear DyIII complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.

135 citations


Journal ArticleDOI
TL;DR: A new SMM is reported, [Li(THF)4[Er{N(SiMe3)2}3Cl]⋅2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization.
Abstract: Given the recent advent of mononuclear single-molecule magnets (SMMs), a rational approach based on lanthanides with axially elongated f-electron charge cloud (prolate) has only recently received attention. We report herein a new SMM, [Li(THF)4[Er{N(SiMe3)2}3Cl]⋅2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization (ΔEeff/kB=63.3 K) and magnetic hysteresis up to 3 K at a magnetic field sweep rate of 34.6 Oe s−1. This work questions the theory that oblate or prolate lanthanides must be stabilized with the appropriate ligand framework in order for SMM behavior to be favored.

131 citations


Journal ArticleDOI
TL;DR: In this article, a tetrahedral block of two H2O molecules and four O:H O bonds is proposed to explain the anomalous behavior of water ice under mechanical compression, thermal excitation, and molecular undercoordination.

127 citations


Journal ArticleDOI
TL;DR: A thermally active artificial kagome spin ice is created that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory, providing experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases.
Abstract: Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases.

126 citations


Journal ArticleDOI
TL;DR: In this article, high-field EPR studies of high-spin trigonal bipyramidal Ni(II) complexes have been conducted to confirm an unprecedented axial magnetic anisotropy, which pushes the limits of the familiar spin-only description.
Abstract: Monometallic complexes based on 3d transition metal ions in certain axial coordination environments can exhibit appreciably enhanced magnetic anisotropy, important for memory applications, due to stabilisation of an unquenched orbital moment. For high-spin trigonal bipyramidal Ni(II), if competing structural distortions can be minimised, this may result in an axial anisotropy that is at least an order of magnitude stronger than found for orbitally non-degenerate octahedral complexes. Broadband, high-field EPR studies of [Ni(MDABCO)2Cl3]ClO4 (1) confirm an unprecedented axial magnetic anisotropy, which pushes the limits of the familiar spin-only description. Crucially, compared to complexes with multidentate ligands that encapsulate the metal ion, we see only a very small degree of axial symmetry breaking. 1 displays field-induced slow magnetic relaxation, which is rare for monometallic Ni(II) complexes due to efficient spin–lattice and quantum tunnelling relaxation pathways.

Journal ArticleDOI
TL;DR: The mechanism of decoherence in solid-state spin qubits subject to low magnetic fields is more complex than previously expected as an additional fast relaxation stage has now been identified as discussed by the authors.
Abstract: The mechanisms of decoherence in solid-state spin qubits subject to low magnetic fields turn out to be more complex than previously expected as an additional fast relaxation stage has now been identified. The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields1,2,3,4, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation5,6,7: fast dephasing due to static but randomly distributed hyperfine fields (∼2 ns)8,9,10,11 and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects12. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (∼750 ns).

Journal ArticleDOI
TL;DR: In this paper, the decay of photovoltage is characterized by electronic events at the ms time scale followed by a power law relaxation in the 10-100 s time window, which is associated with the slow dielectric relaxation of CH3NH3PbI3 perovskite and points to cooperative kinetics of polarization and depolarization of ferroelectric domains.
Abstract: Despite the large photovoltaic performance recently achieved, many aspects of the working principles of hybrid organic–inorganic perovskite solar cells remain to be unveiled. We analyze the experimental features observed in the decay of photovoltage and provide an interpretation of the different depolarization regimes at distinct time scales. We introduce an instantaneous relaxation time that shows the type of relaxation for each separate mechanism. The decay of photovoltage is characterized by electronic events at the ms time scale followed by a power law relaxation in the 10–100 s time window. The latter process is associated with the slow dielectric relaxation of CH3NH3PbI3 perovskite and it points to cooperative kinetics of polarization and depolarization of ferroelectric domains. These findings provide an important tool for interpretation of kinetic features in the perovskite ferroic solar cells.

Journal ArticleDOI
TL;DR: Transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of thesuperconducting electrons is predominantly s wave with an enhanced binding strength, and paves the way for further studies of this family of materials.
Abstract: The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

Journal ArticleDOI
TL;DR: In this article, the authors presented magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 (TC= 3.0
Abstract: Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T(3) dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s-wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s-wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a protocol using individual nitrogen-vacancy centers in diamond to observe the time evolution of proton spins from organic molecules located a few nanometres from the diamond surface.
Abstract: We demonstrate a protocol using individual nitrogen-vacancy centres in diamond to observe the time evolution of proton spins from organic molecules located a few nanometres from the diamond surface. The protocol records temporal correlations among the interacting protons, and thus is sensitive to the local dynamics via its impact on the nuclear spin relaxation and interaction with the nitrogen vacancy. We gather information on the nanoscale rotational and translational diffusion dynamics by analysing the time dependence of the nuclear magnetic resonance signal. Applying this technique to liquid and solid samples, we find evidence that liquid samples form a semi-solid layer of 1.5-nm thickness on the surface of diamond, where translational diffusion is suppressed while rotational diffusion remains present. Extensions of the present technique could be exploited to highlight the chemical composition of molecules tethered to the diamond surface or to investigate thermally or chemically activated dynamical processes such as molecular folding.

Journal ArticleDOI
TL;DR: The investigation of a pentagonal bipyramidal Co(ii) complex with large positive anisotropy revealed field induced Single-Molecule Magnet behaviour with Ueff at 1.0 kOe, belonging to a group of only a handful of complexes which exhibit this unique magnetic property while possessing easy-plane an isotropy.
Abstract: The investigation of a pentagonal bipyramidal Co(II) complex with large positive anisotropy (D ≈ +30 cm−1) revealed field induced Single-Molecule Magnet behaviour with Ueff ≈ 50 K at 1.0 kOe. This compound belongs to a group of only a handful of complexes which exhibit this unique magnetic property while possessing easy-plane anisotropy. At high applied fields, a second relaxation process with an intermolecular nature has been exposed using magnetic dilution studies with varying percentages of Zn(II) analogue. The disappearance of the second relaxation process at low frequency can be followed using magnetically diluted samples at 25%, 10% and 5% Co(II) concentrations.

Journal ArticleDOI
TL;DR: In this paper, the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family was reported. But the results were limited to a single crystal of 3 using a micro-squid array.
Abstract: We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3-)4(Hshi2-)2(H2shi-)2(C5H5N)4(CH3OH) x (H2O) x ]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex.

Journal ArticleDOI
01 Dec 2015-Carbon
TL;DR: In this article, the authors analyzed the evolution of the time-resolved PL spectra of C-dots using picosecond timeresolved spectroscopy to explore the carrier dynamics in carbon nanodots.

Journal ArticleDOI
13 Apr 2015-ACS Nano
TL;DR: Evidence of a strong magnetic coupling between a metallic ion and a radical spin in one of the most extensively studied SMMs: the bis(phtalocyaninato)terbium(III) complex (TbPc2) is reported.
Abstract: Molecular spintronics using single molecule magnets (SMMs) is a fast growing field of nanoscience that proposes to manipulate the magnetic and quantum information stored in these molecules. Herein we report evidence of a strong magnetic coupling between a metallic ion and a radical spin in one of the most extensively studied SMMs: the bis(phtalocyaninato)terbium(III) complex (TbPc2). For that we use an original multiterminal device comprising a carbon nanotube laterally coupled to the SMMs. The current through the device, sensitive to magnetic interactions, is used to probe the magnetization of a single Tb ion. Combining this electronic read-out with the transverse field technique has allowed us to measure the interaction between the terbium ion, its nuclear spin, and a single electron located on the phtalocyanine ligands. We show that the coupling between the Tb and this radical is strong enough to give extra resonances in the hysteresis loop that are not observed in the anionic form of the complex. The ...

Journal ArticleDOI
TL;DR: It is confirmed that the strings of Cu-Zr liquid alloys are a concrete realization of the abstract "cooperatively rearranging regions" of AG, and changes in the local atomic free volume in the course of string-like atomic motion are characterized to better understand the initiation and propagation of these fluid excitations.
Abstract: We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

Journal ArticleDOI
TL;DR: A systematic theoretical study of a whole series of complexes (PPh4)2[Co(XPh)4] (X = O, S, Se) using multireference ab initio methods and magneto-structural correlations are developed that take into account the nature of metal-ligand covalent bonding, ligand spin-orbit coupling, and geometric distortions away from pure tetrahedral symmetry.
Abstract: Over the past several decades, tremendous efforts have been invested in finding molecules that display slow relaxation of magnetization and hence act as single-molecule magnets (SMMs). While initial research was strongly focused on polynuclear transition metal complexes, it has become increasingly evident that SMM behavior can also be displayed in relatively simple mononuclear transition metal complexes. One of the first examples of a mononuclear SMM that shows a slow relaxation of the magnetization in the absence of an external magnetic field is the cobalt(II) tetra-thiolate [Co(SPh)4](2-). Fascinatingly, substitution of the donor ligand atom by oxygen or selenium dramatically changes zero-field splitting (ZFS) and relaxation time. Clearly, these large variations call for an in-depth electronic structure investigation in order to develop a qualitative understanding of the observed phenomena. In this work, we present a systematic theoretical study of a whole series of complexes (PPh4)2[Co(XPh)4] (X = O, S, Se) using multireference ab initio methods. To this end, we employ the recently proposed ab initio ligand field theory, which allows us to translate the ab initio results into the framework of ligand field theory. Magneto-structural correlations are then developed that take into account the nature of metal-ligand covalent bonding, ligand spin-orbit coupling, and geometric distortions away from pure tetrahedral symmetry. The absolute value of zero-field splitting increases when the ligand field strength decreases across the series from O to Te. The zero-field splitting of the ground state of the hypothetical [Co(TePh)4](2-) complex is computed to be about twice as large as for the well-known (PPh4)2[Co(SPh)4] compound. It is shown that due to the π-anisotropy of the ligand donor atoms (S, Se) magneto-structural correlations in [Co(OPh)4](2-) complex differ from [Co(S/SePh)4](2-). In the case of almost isotropic OPh ligand, only variations in the first coordination sphere affect magnetic properties, but in the case of S/SePh ligand, variations in the first and second coordination sphere become equally important for magnetic properties.

Journal ArticleDOI
TL;DR: It is confirmed that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.
Abstract: In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

Journal ArticleDOI
Andrew Lucas1
TL;DR: In this paper, the electrical response of a wide class of strange metal phases without quasiparticles at finite temperature and charge density, with explicitly broken translational symmetry, using holography, was studied.
Abstract: We study the electrical response of a wide class of strange metal phases without quasiparticles at finite temperature and charge density, with explicitly broken translational symmetry, using holography. The low frequency electrical conductivity exhibits a Drude peak, so long as momentum relaxation is slow. The relaxation time and the direct current conductivity are exactly equal to what is computed, independently of holography, via the memory function framework.

Journal ArticleDOI
TL;DR: In this article, a vector network analyzer dielectric spectrometer was used to measure absorbance and index of refraction in the frequency regime of 5.9 GHz to 1.12 GHz.
Abstract: Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water’s most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the supplementary material), we have obtained strong new constraints on theories of water’s collective dynamics. For example, while the salt-dependencies we observe for water’s two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bonds.

Journal ArticleDOI
TL;DR: It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature, and the measured variation of SAR with temperature is frequency dependent.
Abstract: Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Neel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

Journal ArticleDOI
TL;DR: A feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design is developed and the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single- Crystal transformation.
Abstract: Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm(-1) (422 K) to 416 cm(-1) (600 K), and the tunneling relaxation time can be grown from 8.5 × 10(-4) s to 7.4 × 10(-2) s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics.

Journal ArticleDOI
TL;DR: The dominant mechanisms of magnetization relaxation in the bulk phase are discussed followed by an overview of SIMs relevant for surface deposition and the recent experiments on surface-deposited SIMs will be reviewed, along with a discussion of future perspectives.
Abstract: Single-ion magnets (SIMs) are mononuclear molecular complexes exhibiting slow relaxation of magnetization. They are currently attracting a lot of interest because of potential applications in spintronics and quantum information processing. However, exploiting SIMs in, e.g. molecule-inorganic hybrid devices requires a fundamental understanding of the effects of molecule–substrate interactions on the SIM magnetic properties. In this review the properties of lanthanide SIMs in the bulk crystalline phase and deposited on surfaces in the (sub)monolayer regime are discussed. As a starting point trivalent lanthanide ions in a ligand field will be described, and the challenges in characterizing the ligand field are illustrated with a focus on several spectroscopic techniques which are able to give direct information on the ligand-field split energy levels. Moreover, the dominant mechanisms of magnetization relaxation in the bulk phase are discussed followed by an overview of SIMs relevant for surface deposition. Further, a short introduction will be given on x-ray absorption spectroscopy, x-ray magnetic circular dichroism and scanning tunneling microscopy. Finally, the recent experiments on surface-deposited SIMs will be reviewed, along with a discussion of future perspectives.

Journal ArticleDOI
TL;DR: In this article, a mind model is introduced to explain Li-ion battery relaxation behavior, which accounts for three equalization effects inside a particle and through an electrode layer, and two of the three effects are discussed in more detail.

Journal ArticleDOI
TL;DR: A vector network analyzer dielectric spectrometer is built capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision and obtaining strong new constraints on theories of water's collective dynamics.
Abstract: Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bonds.