scispace - formally typeset
Search or ask a question
Topic

Relaxation (NMR)

About: Relaxation (NMR) is a research topic. Over the lifetime, 29342 publications have been published within this topic receiving 689851 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of nanoparticles concentration on heating efficiency was investigated in both Brownian and Neel-dominated regimes and it was shown that increasing nanoparticle concentration leads to a decrease in magnetic relaxation time with increasing nanoparticles.

603 citations

Journal ArticleDOI
TL;DR: In this article, a general approach to spin-lattice relaxation is given for salts to which a crystalline field theory is appropriate, and the relaxation times for non-Kramers and Kramers salts are computed.
Abstract: A general approach to spin-lattice relaxation is given for salts to which a crystalline field theory is appropriate. In particular, the theory of Elliott & Stevens for the interaction of a rare-earth ion with static ionic surroundings is generalized phenomenologically to represent the interaction of the rare-earth ion with the lattice vibrational modes. Evaluation of the spin-lattice interaction in terms of a few constants is possible. One- and two-phonon processes are investigated and the relaxation times for non-Kramers and Kramers salts computed. For the one-phonon (or direct) process the non-Kramers salts exhibit the typical behaviour T 1 ∝ H -2 T -1 , and the Kramers salts T 1 ∝ H -4 T -1 . It is shown that, for a given Zeeman splitting of the ground doublet, the latter may exhibit an enormous anisotropy with respect to the direction of the external field, approximately proportional to the anisotropy of the temperature-independent part of the susceptibility. Application of the general theory is made to two salts, holmium and dysprosium ethyl sulphate; the former a non-Kramers, the latter a Kramers salt. It is shown that the dysprosium salt would be expected to show a relaxation time in the direct process region which will vary as sin -2 θ cos -2 θH -4 T -1 , where θ is the angle the external magnetic field makes with the crystallographic symmetry axis. For two-phonon processes, the additional distinction of whether the Debye energy ( Kθ D ) is less than or greater than the crystalline field splitting Δ between the ground state and the first excited state must be made. Non-Kramers salts to which the former condition apply ( Kθ D T -7 and is independent of magnetic field. When Kθ D > Δ, there is present in addition a term arising from a resonance process, analogous to the resonance radiation effect in gases. Phonons of energy ~ Δ are absorbed and emitted by the spin system preferentially because of a phonon resonance with the crystalline field splitting of the spin states. As normally KT is much less than Δ, this leads to a relaxation time proportional to exp (Δ/ KT ). This process will dominate the Raman process except at very high and low temperatures. It is shown to be significant right down to the liquid-helium range by comparison with the relaxation rate due to direct processes. Kramers salts, when Kθ D T -9 and independent of field. This 9Van Vleck cancellation’ is shown to be a consequence of time reversal symmetry. When Kθ D > Δ, the resonance process is also present, the relaxation time again being proportional to exp (Δ/ KT ). The resonance process is now shown to be dominant down to 1 or 2 °K for many rare-earth salts. Experimental verification is found for the resonance relaxation process in the rare-earth ethyl sulphates. In general, it is expected that this mechanism will be significant for any magnetic salt in which Kθ D > Δ.

601 citations

Journal ArticleDOI
TL;DR: Using the spin Hall effect, magnetization relaxation in a Ni_{81}Fe_{19}/Pt film is manipulated electrically without applying electric currents directly to the magnetic layer.
Abstract: Using the spin Hall effect, magnetization relaxation in a Ni_{81}Fe_{19}/Pt film is manipulated electrically. An electric current applied to the Pt layer exerts spin torque on the entire magnetization of the Ni81Fe19 layer via the macroscopic spin transfer induced by the spin Hall effect and modulates the magnetization relaxation in the Ni81Fe19 layer. This method allows us to tune the magnetization dynamics regardless of the film size without applying electric currents directly to the magnetic layer.

597 citations

Journal ArticleDOI
TL;DR: In this paper, the Langevin-dynamics approach was used to study the dynamics of magnetic nanoparticles, and the results were compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy.
Abstract: The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically solved (properly observing the customary interpretation of it as a Stratonovich stochastic differential equation), in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a number of heuristic expressions for the linear dynamic susceptibility, only the simple formula proposed by Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numerical results with the asymptotic formula of Storonkin {Sov. Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]}, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but their dramatic influence on the phase shifts. Comparison of the numerical results with the exact zero-damping expression for the transverse susceptibility by Garanin, Ishchenko, and Panina {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fiz. 82, 242 (1990)]}, reveals a sizable contribution of the spread of the precession frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high temperatures.

594 citations

Journal ArticleDOI
H. C. Torrey1
TL;DR: The general theory of Bloembergen, Purcell, and Pound of nuclear spin relaxation has been extended to a more quantitative study of relaxation by translational diffusion as mentioned in this paper, and it has been found necessary to treat the problem by the theory of random walk.
Abstract: The general theory of Bloembergen, Purcell, and Pound of nuclear spin relaxation has been extended to a more quantitative study of relaxation by translational diffusion. It has been found necessary to treat the problem by the theory of random walk. In the case of isotropic diffusion two cases have been studied: one in which the flight distance has a probability distribution, and the other in which it is constant. The problem of random walk to nearest neighbor sites in a lattice is also treated and quantitative results are obtained for a face-centered cubic lattice.

591 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
88% related
Excited state
102.2K papers, 2.2M citations
87% related
Electron
111.1K papers, 2.1M citations
86% related
Band gap
86.8K papers, 2.2M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202227
2021652
2020582
2019614
2018638
2017645