scispace - formally typeset
Search or ask a question
Topic

Relaxation (NMR)

About: Relaxation (NMR) is a research topic. Over the lifetime, 29342 publications have been published within this topic receiving 689851 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dynamics of the hot carriers in metallic nanodots induced by femtosecond laser pulses are investigated in gold nanoparticles embedded in hydrogel and in organic gel and compared to that in aqueous solution.

114 citations

Journal ArticleDOI
TL;DR: In this article, the influence of inhomogeneous dielectric response on the dynamics of solvation of ions and dipoles is investigated, and the deviation of the average relaxation time from that predicted for a homogeneous continuum solvent is shown.
Abstract: The influence of an inhomogeneous dielectric response on the dynamics of solvation of ions and dipoles is investigated. Solvent models considered include discrete shell models as well as models in which the solvent dielectric constant varies continuously as a function of distance from a spherical solute. The effect of such dielectric inhomogeneity is to introduce additional, slower relaxation times into the solvation response when compared to the homogeneous case. For all models studied, the deviation of the average relaxation time from that predicted for a homogeneous continuum solvent increases as the dielectric constant and the length parameter, which specifies the rapidity of approach to bulk behavior, increase. For a given solvent model the solvation response to a change in a point dipole moment is slower than the response to a charge jump. The continuum results are compared to a recent molecular model based on the mean spherical approximation. The comparison suggests that deviations from homogeneous continuum behavior in the molecular model can be accounted for by inhomogeneity of the solvent dielectric constant extending only over the first solvation shell. Predictions of inhomogeneous continuum models are also compared to experimental data. Both the observed dependence of average relaxation time on dielectric constant, and the detailed time dependence of the relaxation in high dielectric constant solvents can be rationalized on the basis of such models.

114 citations

Journal ArticleDOI
TL;DR: [Fe(pyoa)2]infinity is best considered as a "metamagnetic-like" single-chain magnet that exhibits field-induced metamagnetic behavior such that, in an applied field smaller than the critical field, the iron(II) spin-canted moments experience intrachain ferromagnetic interactions and weak interchain antiferromeagnetic interactions; the spin canting yields weak ferromagnetism.
Abstract: A two-dimensional iron(II) carboxylate coordination polymer, [Fe(pyoa)2]infinity, where pyoa is 2-(pyridin-3-yloxy)acetate, has been prepared by hydrothermal synthesis. Its crystal structure reveals a single iron(II) site with an elongated octahedral coordination environment containing four equatorial carboxylate oxygens and two axial pyridyl nitrogens; the iron(II) sites are linked by syn-anti micro-carboxylates to form chains along the b axis that have an Fe...Fe separation of 4.910 A. The shortest interchain and interlayer Fe...Fe distances are 6.453 and 11.125 A, respectively. The 4.2-295 K Mossbauer spectra of [Fe(pyoa) 2] infinity consist of a single paramagnetic high-spin iron(II) quadrupole doublet. The axial Fe-N bond direction defines the Jahn-Teller axis at an iron(II) site and, consequently, the orientation of the single-ion magnetic anisotropy. Thus, along the b axis in a given chain, the spins are collinear and parallel to the Jahn-Teller axis. The Jahn-Teller axes of adjacent intralayer chains have different orientations with an angle of 79.2 degrees between the axes in adjacent chains in a bc layer. [Fe(pyoa)2]infinity exhibits field-induced metamagnetic behavior such that, in an applied field smaller than the critical field, the iron(II) spin-canted moments experience intrachain ferromagnetic interactions and weak interchain antiferromagnetic interactions; the spin canting yields weak ferromagnetism. In an applied field larger than the critical field, the weak antiferromagnetic interchain interactions are overwhelmed to yield superparamagnetic-like slow-magnetic relaxation with an energy barrier of 23(3) K. Single-crystal magnetic studies reveal a quasi-uniaxial magnetic anisotropy with the a axis as the easy-magnetic axis and the b axis as the hard-magnetic axis; the susceptibility measured along the easy a axis may be fit with the Glauber model to yield an effective intrachain exchange coupling constant of 2.06(8) K. A dynamic analysis of the susceptibility yields a 6.3(1) K energy barrier for intrachain domain wall creation. The observed field-assisted superparamagnet-like behavior is consistent with the dynamics of a single-chain magnet. Thus, [Fe(pyoa)2]infinity is best considered as a "metamagnetic-like" single-chain magnet.

114 citations

Journal ArticleDOI
TL;DR: In this article, the densities, conductivities, viscosities and dielectric properties of binary mixtures of the tetrafluoroborate and the dicyanamide salts of 1-N-ethyl-3-Nethylimidazolium have been measured at 25 °C.

114 citations

Journal ArticleDOI
TL;DR: The effect of electron tunneling on the mechanical resonance of an as-grown suspended carbon nanotube is found to depend on frequency as the tunneling time becomes comparable to the vibration period.
Abstract: We measure the mechanical resonances of an as-grown suspended carbon nanotube, detected via electrical mixing in the device. A sequence of modes extending to 39 GHz is observed with a quality factor of 35 000 in the highest mode. This unprecedentedly high combination corresponds to a thermal excited state probability below 10–8 and a relaxation time of 140 ns with microsecond relaxation times for lower modes. The effect of electron tunneling on the mechanical resonance is found to depend on frequency as the tunneling time becomes comparable to the vibration period.

114 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
88% related
Excited state
102.2K papers, 2.2M citations
87% related
Electron
111.1K papers, 2.1M citations
86% related
Band gap
86.8K papers, 2.2M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202227
2021652
2020582
2019614
2018638
2017645