scispace - formally typeset
Search or ask a question
Topic

Relaxation (NMR)

About: Relaxation (NMR) is a research topic. Over the lifetime, 29342 publications have been published within this topic receiving 689851 citations.


Papers
More filters
Journal ArticleDOI
Charles Angell1
TL;DR: In this paper, the authors consider two types of structural instability of glassy substances, each of which may be released by a relaxation process with its own characteristic relaxation time, and specific kinetic features.
Abstract: We consider two sorts of structural instability of glassy substances, each of which may be released by a relaxation process with its own characteristic relaxation time, and specific kinetic features. The first of these is the instability against relaxation out of the amorphous state into the crystalline state, while the second is the instability against relaxation within the amorphous state itself. The latter may often involve relaxation out of a homogeneous amorphous phase into a two-phase amorphous structure, but we will not specifically consider this liquid-liquid phase separation process here. In most glasses, the former (which is no more than the characteristic nucleation time) is much longer than the latter time. However, there are important classes of glasses, for instance the metallic glasses, in which the former is in fact the shorter time, a fact which is responsible for the inability to observe the glass transition phenomenon in such substances. In this paper we will be considering the relation between these two times and the specific kinetics of each. The nucleation time has been the subject of theoretical developments over a number of decades, and details will be omitted in order to concentrate on experimental studies of this phenomenon. We will described briefly the recently developed DSC techniques for determining the classical time-temperature-transformation curves for a variety of supercooled liquids, and the relation of these to the nucleation curves. The relaxation process within the amorphous state, which can be observed for cases where the nucleation time is relatively long, has a number of features which currently lack a complete explanation. In most cases the relaxation process is non-Arrhenius in its temperature dependence, nonexponential in its time dependence, and nonlinear in its structural state dependence. Some examples taken from glasses at the “fragile” edge of the deduced viscosity-temperature pattern for glassforming liquids are dealt with in detail, and the distinction between shear stress relaxation and thermodynamic stress relaxation is made. The possibility that near T g the latter relaxation time remains Vogel-Fulcher in form with T 0 ≡ T K (the Kauzmann temperature), in contrast with the common observations for (the decoupled) shear relaxation, is raised. Strong support for this notion is found in the current “specific heat spectroscopy” results of Nagel and co-workers. Microscopic relaxation processes, as observed using spectroscopic probes and neutron scattering techniques, are reviewed, and the difference in non-exponentiality from macroscopic relaxation are examined in the light of current theories. Finally, secondary relaxations in ionic and molecular glasses, and their relation to the fastest of all glassy state relaxation processes, the tunnelling modes (TLS), are briefly considered.

362 citations

Journal ArticleDOI
TL;DR: On the basis of the agreement of theory with data for solutions of small paramagnetic complexes, large magnetite particles, and liver containing low‐density polymer‐coated magnetite agglomerates, it is argued that the theory is sufficiently reliable so that, e.g., for ferritin, it appears that diffusion through intracellular gradients determines 1/T2.
Abstract: Since 1/T2 of protons of tissue water is generally much greater than 1/T1 at typical imaging fields, small single-ion contrast agents--such as Gd(DTPA), which make comparable incremental contributions and therefore smaller fractional contributions to 1/T2 compared to 1/T1--are not as desirable for contrast-enhancement as agents that could enhance 1/T2 preferentially. In principle, such specialized agents will only be effective at higher fields because the field dependence (dispersion) of 1/T1 is such that it approaches zero at high fields whereas 1/T2 approaches a constant value. The residual 1/T2 is called the "secular" contribution and arises from fluctuations in time--as sensed by the protons of diffusing solvent or tissue water molecules--of the component of the magnetic field parallel to the static applied field. For solutions or suspensions of sufficiently large paramagnetic or ferromagnetic particles (greater than or equal to 250 A diameter), the paramagnetic contributions to the relaxation rates satisfy 1/T2 much greater than 1/T1 at typical imaging fields. We examine the theory of secular relaxation in some detail, particularly as it applies to systems relevant to magnetic resonance imaging, and then analyze the data for solutions, suspensions, or tissue containing ferritin, erythrocytes, agar-bound magnetite particles, and liver with low-density composite polymer-coated magnetite. In most cases we can explain the relaxation data, often quantitatively, in terms of the theory of relaxation of protons (water molecules) diffusing in the outer sphere environments of magnetized particles. The dipolar field produced by these particles has a strong spatial dependence, and its apparent fluctuations in time as seen by the diffusing protons produce spin transitions that contribute to both 1/T1 and /T2 comparably at low fields; for the larger particles, because of dispersion, the secular term dominates at fields of interest. On the basis of the agreement of theory with data for solutions of small paramagnetic complexes, large magnetite particles, and liver containing low-density polymer-coated magnetite agglomerates, it is argued that the theory is sufficiently reliable so that, e.g., for ferritin--for which 1/T2 is unexpectedly large--the source of its large relaxivity must reside in nonideal chemistry of the ferritin core. For blood, it appears that diffusion through intracellular gradients determines 1/T2.

360 citations

Journal ArticleDOI
TL;DR: A mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet has a very high effective energy barrier and displays pronounced magnetic bistability, which is shown to arise from a strong ligand field in combination with axial distortion.
Abstract: Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.

360 citations

Journal ArticleDOI
TL;DR: The results suggest, in a time-averaged sense, that in the cholesterol-poor fluid phase the cholesterol molecule essentially spans the bilayer, whereas in theolesterol-rich fluidphase the molecule is present in both monolayers of the bilayers.
Abstract: The fluid-phase behavior of binary mixtures of cholesterol with phosphatidylcholines is investigated using magnetic resonance methods. Phospholipid biradicals provide the electron spin resonance spectroscopic resolution of two immiscible fluid phases in the dipalmitoylphosphatidylcholine-cholesterol system. Isotropic chemical shifts of the phospholipid carbonyl carbons in binary mixtures with cholesterol measured using solid-state high-resolution nuclear magnetic resonance methods furnish evidence for a putative hydrogen bond between the 3 beta-hydroxyl of cholesterol and the sn-2 carbonyl of the phospholipid. The location in the bilayer of cholesterol in the two fluid phases is determined by measuring spin label-enhanced spin-lattice relaxation rates of the 13C nuclei of both the phospholipid and cholesterol molecules. These results suggest, in a time-averaged sense, that in the cholesterol-poor fluid phase the cholesterol molecule essentially spans the bilayer, whereas in the cholesterol-rich fluid phase the molecule is present in both monolayers of the bilayer.

355 citations

Journal ArticleDOI
TL;DR: Simple theoretical approaches used for understanding typical SCM behavior and some rational synthetic strategies to obtain SCM materials are summarized together with representative examples of SCMs previously reported.
Abstract: Slow relaxation of the magnetization (i.e., "magnet-like" behavior) in materials composed of magnetically isolated chains was observed for the first time in 2001. This type of behavior was predicted in the 1960s by Glauber in a chain of ferromagnetically coupled Ising spins (the so-called Glauber dynamics). In 2002, this new class of nanomagnets was named single-chain magnets (SCMs) by analogy to single-molecule magnets that are isolated molecules displaying related superparamagnetic properties. A long-range order occurs only at T = 0 K in any pure one-dimensional (1D) system, and thus such systems remain in their paramagnetic state at any finite temperature. Nevertheless, the combined action of large uniaxial anisotropy and intrachain magnetic interactions between high-spin magnetic units of the 1D arrangement promotes long relaxation times for the magnetization reversal with decreasing temperature, and finally at significantly low temperatures, the material can behave as a magnet. In this Forum Article, we summarize simple theoretical approaches used for understanding typical SCM behavior and some rational synthetic strategies to obtain SCM materials together with representative examples of SCMs previously reported.

353 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
88% related
Excited state
102.2K papers, 2.2M citations
87% related
Electron
111.1K papers, 2.1M citations
86% related
Band gap
86.8K papers, 2.2M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202227
2021652
2020582
2019614
2018638
2017645