scispace - formally typeset
Search or ask a question
Topic

Remotely operated underwater vehicle

About: Remotely operated underwater vehicle is a research topic. Over the lifetime, 4497 publications have been published within this topic receiving 65165 citations. The topic is also known as: ROV & non-automnomous underwater vehicule.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent vision-based on-road vehicle detection systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems is presented.
Abstract: Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then, we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of the methods discussed, we assess their potential for future deployment, and we present directions for future research.

1,181 citations

Journal ArticleDOI
TL;DR: Seagliders are small, reusable autonomous underwater vehicles designed to glide from the ocean surface to a programmed depth and back while measuring temperature, salinity, depth-averaged current, and other quantities along a sawtooth trajectory through the water as mentioned in this paper.
Abstract: Seagliders are small, reusable autonomous underwater vehicles designed to glide from the ocean surface to a programmed depth and back while measuring temperature, salinity, depth-averaged current, and other quantities along a sawtooth trajectory through the water. Their low hydrodynamic drag and wide pitch control range allow glide slopes in the range 0.2 to 3. They are designed for missions in a range of several thousand kilometers and durations of many months. Seagliders are commanded remotely and report their measurements in near real time via wireless telemetry. The development and operation of Seagliders and the results of field trials in Puget Sound are reported.

978 citations

Journal ArticleDOI
TL;DR: In this article, a sliding-mode autopilot is designed for the combined steering, diving, and speed control functions of an AUV, assuming decoupled modeling, and the influence of speed, modeling nonlinearity, uncertainty, and disturbances can be effectively compensated.
Abstract: A six-degree-of-freedom model for the maneuvering of an underwater vehicle is used and a sliding-mode autopilot is designed for the combined steering, diving, and speed control functions. In flight control applications of this kind, difficulties arise because the system to be controlled is highly nonlinear and coupled, and there is a good deal of parameter uncertainty and variation with operational conditions. The development of variable-structure control in the form of sliding modes has been shown to provide robustness that is expected to be quite remarkable for AUV autopilot design. It is shown that a multivariable sliding-mode autopilot based on state feedback, designed assuming decoupled modeling, is quite satisfactory for the combined speed, steering, and diving response of a slow AUV. The influence of speed, modeling nonlinearity, uncertainty, and disturbances, can be effectively compensated, even for complex maneuvering. Waypoint acquisition based on line-of-sight guidance is used to achieve path tracking. >

917 citations

Journal ArticleDOI
TL;DR: This article presents an unmanned aircraft system design fulfillingUrban search and rescue missions raise special requirements on robotic systems, and uses both laser and stereo vision odometry to enable seamless indoor and outdoor navigation.
Abstract: Urban search and rescue missions raise special requirements on robotic systems. Small aerial systems provide essential support to human task forces in situation assessment and surveillance. As external infrastructure for navigation and communication is usually not available, robotic systems must be able to operate autonomously. A limited payload of small aerial systems poses a great challenge to the system design. The optimal tradeoff between flight performance, sensors, and computing resources has to be found. Communication to external computers cannot be guaranteed; therefore, all processing and decision making has to be done on board. In this article, we present an unmanned aircraft system design fulfilling these requirements. The components of our system are structured into groups to encapsulate their functionality and interfaces. We use both laser and stereo vision odometry to enable seamless indoor and outdoor navigation. The odometry is fused with an inertial measurement unit in an extended Kalman filter. Navigation is supported by a module that recognizes known objects in the environment. A distributed computation approach is adopted to address the computational requirements of the used algorithms. The capabilities of the system are validated in flight experiments, using a quadrotor.

721 citations

Journal ArticleDOI
TL;DR: In this paper, a small (50-kg, 2-m long) underwater vehicle with operating speeds of 20-30 cm/s and ranges up to 6000 km has been developed and field tested.
Abstract: A small (50-kg, 2-m long) underwater vehicle with operating speeds of 20-30 cm/s and ranges up to 6000 km has been developed and field tested. The vehicle is essentially an autonomous profiling float that uses a buoyancy engine to cycle vertically and wings to glide horizontally while moving up and down. Operational control and data relay is provided by GPS navigation and two-way communication through ORBCOMM low-Earth-orbit satellites. Missions are envisioned with profile measurements repeated at a station or spaced along a transect. The initial instrument complement of temperature, conductivity, and pressure sensors was used to observe internal waves and tides in the Monterey underwater canyon.

720 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
78% related
Control theory
299.6K papers, 3.1M citations
77% related
Adaptive control
60.1K papers, 1.2M citations
77% related
Robustness (computer science)
94.7K papers, 1.6M citations
76% related
Control system
129K papers, 1.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023107
2022257
202192
2020161
2019199
2018218