scispace - formally typeset
Search or ask a question
Topic

Replication timing

About: Replication timing is a research topic. Over the lifetime, 772 publications have been published within this topic receiving 36717 citations.


Papers
More filters
Journal ArticleDOI
05 Oct 2001-Science
TL;DR: Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae, finding the two ends of each of the 16 chromosomes are highly correlated in their times of replication.
Abstract: Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

850 citations

Journal ArticleDOI
20 Nov 2014-Nature
TL;DR: It is demonstrated that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replicationdomain boundaries, largely accounting for the previously reported lack of alignment.
Abstract: Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.

783 citations

Journal ArticleDOI
TL;DR: The results reveal evolutionarily conserved aspects of developmentally regulated replication programs in mammals, demonstrate the power of replication profiling to distinguish closely related cell types, and strongly support the hypothesis that replication timing domains are spatially compartmentalized structural and functional units of three-dimensional chromosomal architecture.
Abstract: To identify evolutionarily conserved features of replication timing and their relationship to epigenetic properties, we profiled replication timing genome-wide in four human embryonic stem cell (hESC) lines, hESC-derived neural precursor cells (NPCs), lymphoblastoid cells, and two human induced pluripotent stem cell lines (hiPSCs), and compared them with related mouse cell types. Results confirm the conservation of coordinately replicated megabase-sized "replication domains" punctuated by origin-suppressed regions. Differentiation-induced replication timing changes in both species occur in 400- to 800-kb units and are similarly coordinated with transcription changes. A surprising degree of cell-type-specific conservation in replication timing was observed across regions of conserved synteny, despite considerable species variation in the alignment of replication timing to isochore GC/LINE-1 content. Notably, hESC replication timing profiles were significantly more aligned to mouse epiblast-derived stem cells (mEpiSCs) than to mouse ESCs. Comparison with epigenetic marks revealed a signature of chromatin modifications at the boundaries of early replicating domains and a remarkably strong link between replication timing and spatial proximity of chromatin as measured by Hi-C analysis. Thus, early and late initiation of replication occurs in spatially separate nuclear compartments, but rarely within the intervening chromatin. Moreover, cell-type-specific conservation of the replication program implies conserved developmental changes in spatial organization of chromatin. Together, our results reveal evolutionarily conserved aspects of developmentally regulated replication programs in mammals, demonstrate the power of replication profiling to distinguish closely related cell types, and strongly support the hypothesis that replication timing domains are spatially compartmentalized structural and functional units of three-dimensional chromosomal architecture.

567 citations

Journal ArticleDOI
TL;DR: A genome-scale approach to map temporally ordered replicating DNA using massively parallel sequencing and applied to study regional variation in human DNA replication time across multiple human cell types revealed that DNA replication typically initiates within foci of accessible chromatin comprising clustered DNaseI hypersensitive sites, and that replication time is better correlated with chromatin accessibility than with gene expression.
Abstract: Faithful transmission of genetic material to daughter cells involves a characteristic temporal order of DNA replication, which may play a significant role in the inheritance of epigenetic states. We developed a genome-scale approach—Repli Seq—to map temporally ordered replicating DNA using massively parallel sequencing and applied it to study regional variation in human DNA replication time across multiple human cell types. The method requires as few as 8,000 cytometry-fractionated cells for a single analysis, and provides high-resolution DNA replication patterns with respect to both cell-cycle time and genomic position. We find that different cell types exhibit characteristic replication signatures that reveal striking plasticity in regional replication time patterns covering at least 50% of the human genome. We also identified autosomal regions with marked biphasic replication timing that include known regions of monoallelic expression as well as many previously uncharacterized domains. Comparison with high-resolution genome-wide profiles of DNaseI sensitivity revealed that DNA replication typically initiates within foci of accessible chromatin comprising clustered DNaseI hypersensitive sites, and that replication time is better correlated with chromatin accessibility than with gene expression. The data collectively provide a unique, genome-wide picture of the epigenetic compartmentalization of the human genome and suggest that cell-lineage specification involves extensive reprogramming of replication timing patterns.

543 citations

Journal ArticleDOI
TL;DR: It is concluded that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation, a novel characteristic of the pluripotent state.
Abstract: DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these “replicon clusters” coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call “replication domains,” separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state.

532 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
84% related
Regulation of gene expression
85.4K papers, 5.8M citations
83% related
Gene
211.7K papers, 10.3M citations
80% related
Genome
74.2K papers, 3.8M citations
80% related
Cellular differentiation
90.9K papers, 6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202252
202145
202042
201953
201848