scispace - formally typeset
Search or ask a question
Topic

Representation (systemics)

About: Representation (systemics) is a research topic. Over the lifetime, 33821 publications have been published within this topic receiving 475461 citations.


Papers
More filters
01 Dec 2012
TL;DR: In this article, the authors focus on improving the representation of mineral dust in the Community Atmosphere Model and assess the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere.
Abstract: Aerosol-climate interactions constitute one of the major sources of uncertainty in assessing changes in aerosol forcing in the anthropocene as well as understanding glacial-interglacial cycles. Here we focus on improving the representation of mineral dust in the Community Atmosphere Model and assessing the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere. We simulated the dust cycle using different parameterization sets for dust emission, size distribution, and optical properties. Comparing the results of these simulations with observations of concentration, deposition, and aerosol optical depth allows us to refine the representation of the dust cycle and its climate impacts. We propose a tuning method for dust parameterizations to allow the dust module to work across the wide variety of parameter settings which can be used within the Community Atmosphere Model. Our results include a better representation of the dust cycle, most notably for the improved size distribution. The estimated net top of atmosphere direct dust radiative forcing is −0.23 ± 0.14 W/m2 for present day and −0.32 ± 0.20 W/m2 at the Last Glacial Maximum. From our study and sensitivity tests, we also derive some general relevant findings, supporting the concept that the magnitude of the modeled dust cycle is sensitive to the observational data sets and size distribution chosen to constrain the model as well as the meteorological forcing data, even within the same modeling framework, and that the direct radiative forcing of dust is strongly sensitive to the optical properties and size distribution used.

213 citations

Journal ArticleDOI
TL;DR: A taxonomy of three general classes of techniques for discovering roles that includes (i) graph-based roles, (ii) feature- based roles, and (iii) hybrid roles is proposed, which consists of two fundamental components: (a) role feature construction and (b) role assignment using the learned feature representation.
Abstract: Roles represent node-level connectivity patterns such as star-center, star-edge nodes, near-cliques or nodes that act as bridges to different regions of the graph. Intuitively, two nodes belong to the same role if they are structurally similar. Roles have been mainly of interest to sociologists, but more recently, roles have become increasingly useful in other domains. Traditionally, the notion of roles were defined based on graph equivalences such as structural, regular, and stochastic equivalences. We briefly revisit these early notions and instead propose a more general formulation of roles based on the similarity of a feature representation (in contrast to the graph representation). This leads us to propose a taxonomy of three general classes of techniques for discovering roles that includes(i) graph-based roles, (ii) feature-based roles, and (iii) hybrid roles. We also propose a flexible framework for discovering roles using the notion of similarity on a feature-based representation. The framework consists of two fundamental components: (a) role featureconstruction and (b) role assignment using the learned feature representation. We discuss the different possibilities for discoveringfeature-based roles and the tradeoffs of the many techniques for computing them. Finally, we discuss potential applications and future directions and challenges.

213 citations

Patent
17 Mar 1998
TL;DR: In this paper, a GIS system is presented in which topological information is classified as geometrical objects and uses a region identifier and a geometry attribute to reconstruct each topological feature.
Abstract: The present invention is a GIS system in which topological information is classified as geometrical objects and uses a region identifier and a geometry attribute to reconstruct each topological feature. The present invention starts from the geometrical objects representing topological features. Each geometrical object has an entry including a region identifier attribute and a geometry attribute defining the geometry of a complete representation of the feature. These geometrical objects are complete in that an entry of the object attribute includes a record for a geometry attribute defining the complete geometry of a complete representation of a topological feature. These complete geometrical objects need not inherit attributes from other objects. The objects are classified as either a polygon object, polyline object, point object or raster object and stored in a respective object-based database. Using this data structure, a topological region can be displayed in real time by accessing this object-based data structure and loading the data structure associated with the topological region into a buffer. The geometrical objects associated with the topological region are then fetched from the buffer and loaded into a virtual blackboard. The fetched geometrical objects are then drawn on a display in real time.

213 citations

Journal ArticleDOI
TL;DR: Algorithms are presented that modify an initial road-network representation, so that it works better as a basis for predicting an object's position, and an attempt is made to use known movement patterns of the object, in the form of routes, to use acceleration profiles together with the routes.
Abstract: With the continued advances in wireless communications, geo-positioning, and consumer electronics, an infrastructure is emerging that enables location-based services that rely on the tracking of the continuously changing positions of entire populations of service users, termed moving objects. This scenario is characterized by large volumes of updates, for which reason location update technologies become important. A setting is assumed in which a central database stores a representation of each moving object's current position. This position is to be maintained so that it deviates from the user's real position by at most a given threshold. To do so, each moving object stores locally the central representation of its position. Then, an object updates the database whenever the deviation between its actual position (as obtained from a GPS device) and the database position exceeds the threshold. The main issue considered is how to represent the location of a moving object in a database so that tracking can be done with as few updates as possible. The paper proposes to use the road network within which the objects are assumed to move for predicting their future positions. The paper presents algorithms that modify an initial road-network representation, so that it works better as a basis for predicting an object's position; it proposes to use known movement patterns of the object, in the form of routes; and, it proposes to use acceleration profiles together with the routes. Using real GPS-data and a corresponding real road network, the paper offers empirical evaluations and comparisons that include three existing approaches and all the proposed approaches.

212 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202225
20211,580
20201,876
20191,935
20181,792
20171,391