scispace - formally typeset
Search or ask a question
Topic

Reproductive senescence

About: Reproductive senescence is a research topic. Over the lifetime, 752 publications have been published within this topic receiving 36844 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: August Weismann's theory is subject to a number of criticisms, the most forceful of which are: 1) The fallacy of identifying senescence with mechanical wear, 2) the extreme rarity, in natural populations, of individuals that would be old enough to die of the postulated death-mechanism, 3) the failure of several decades of gerontological research to uncover any deathmechanisms, and 4) the difficulties involved in visualizing how such a feature could be produced
Abstract: A new individual entering a population may be said to have a reproductive probability distribution. The reproductive probability is zero from zygote to reproductive maturity. Later, perhaps shortly...

3,981 citations

Journal ArticleDOI
TL;DR: It is emphasized that sex is a biological variable that should be considered in immunological studies and contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females.
Abstract: Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

3,214 citations

Journal ArticleDOI
TL;DR: A basis for the theory that senescence is an inevitable outcome of evolution is established and the model shows that higher fertility will be a primary factor leading to the evolution of higher rates ofsenescence unless the resulting extra mortality is confined to the immature period.

1,966 citations

Journal ArticleDOI
TL;DR: This review focuses upon key branching points during the development of ovarian follicles as well as factors involved in determining the eventual destiny of individual follicles, and discusses inconsistencies in the literature regarding the definitions of follicle recruitment and selection.
Abstract: Mammalian ovaries consist of follicles as basic functional units. The total number of ovarian follicles is determined early in life, and the depletion of this pool leads to reproductive senescence. Each follicle develops to either ovulate or, more likely, to undergo degeneration. The dynamics of ovarian follicle development have interested endocrinologists and developmental biologists for many years. With the advent of assisted reproductive techniques in humans, the possibility of regulating follicle development in vivo and in vitro has gained clinical relevance. In this review, we focus upon key branching points during the development of ovarian follicles as well as factors involved in determining the eventual destiny of individual follicles. We discuss inconsistencies in the literature regarding the definitions of follicle recruitment and selection and propose to name the two major steps of follicle development as initial and cyclic recruitment, respectively. Because some of these disparities have arisen due to differences in the animal systems studied, we also compare the development of the ovarian follicles of both humans and rats. We also review the status of knowledge of several puzzling clinical issues that may provide important clues toward unlocking the mechanisms of follicle development.

1,501 citations

Journal ArticleDOI
TL;DR: Significant mitochondrial dysfunction occurs early in AD pathogenesis in a female AD mouse model and provides a plausible mechanistic rationale for the hypometabolism in brain that precedes AD diagnosis and suggests therapeutic targets for prevention of AD.
Abstract: Mitochondrial dysfunction has been proposed to play a pivotal role in neurodegenerative diseases, including Alzheimer's disease (AD). To address whether mitochondrial dysfunction precedes the development of AD pathology, we conducted mitochondrial functional analyses in female triple transgenic Alzheimer's mice (3xTg-AD) and age-matched nontransgenic (nonTg). Mitochondrial dysfunction in the 3xTg-AD brain was evidenced by decreased mitochondrial respiration and decreased pyruvate dehydrogenase (PDH) protein level and activity as early as 3 months of age. 3xTg-AD mice also exhibited increased oxidative stress as manifested by increased hydrogen peroxide production and lipid peroxidation. Mitochondrial amyloid beta (Aβ) level in the 3xTg-AD mice was significantly increased at 9 months and temporally correlated with increased level of Aβ binding to alcohol dehydrogenase (ABAD). Embryonic neurons derived from 3xTg-AD mouse hippocampus exhibited significantly decreased mitochondrial respiration and increased glycolysis. Results of these analyses indicate that compromised mitochondrial function is evident in embryonic hippocampal neurons, continues unabated in females throughout the reproductive period, and is exacerbated during reproductive senescence. In nontransgenic control mice, oxidative stress was coincident with reproductive senescence and accompanied by a significant decline in mitochondrial function. Reproductive senescence in the 3xTg-AD mouse brain markedly exacerbated mitochondrial dysfunction. Collectively, the data indicate significant mitochondrial dysfunction occurs early in AD pathogenesis in a female AD mouse model. Mitochondrial dysfunction provides a plausible mechanistic rationale for the hypometabolism in brain that precedes AD diagnosis and suggests therapeutic targets for prevention of AD.

794 citations


Network Information
Related Topics (5)
Offspring
26.6K papers, 874.3K citations
82% related
Sperm
43.4K papers, 1.3M citations
75% related
Estrogen
40.7K papers, 1.7M citations
74% related
Testosterone
23.2K papers, 808K citations
73% related
Epigenetics
38.1K papers, 1.7M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202141
202042
201936
201840
201750
201635