scispace - formally typeset
Search or ask a question
Topic

Rescue robot

About: Rescue robot is a research topic. Over the lifetime, 1618 publications have been published within this topic receiving 16176 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 2003
TL;DR: The World Trade Center (WTC) rescue response provided an unfortunate opportunity to study the human-robot interactions (HRI) during a real unstaged rescue for the first time as mentioned in this paper, which resulted in 17 findings on the impact of the environment and conditions on the HRI: skills displayed and needed by robots and humans, details of the Urban Search and Rescue (USAR) task, the social informatics in the USAR domain, and what information is communicated at what time.
Abstract: The World Trade Center (WTC) rescue response provided an unfortunate opportunity to study the human-robot interactions (HRI) during a real unstaged rescue for the first time. A post-hoc analysis was performed on the data collected during the response, which resulted in 17 findings on the impact of the environment and conditions on the HRI: the skills displayed and needed by robots and humans, the details of the Urban Search and Rescue (USAR) task, the social informatics in the USAR domain, and what information is communicated at what time. The results of this work impact the field of robotics by providing a case study for HRI in USAR drawn from an unstaged USAR effort. Eleven recommendations are made based on the findings that impact the robotics, computer science, engineering, psychology, and rescue fields. These recommendations call for group organization and user confidence studies, more research into perceptual and assistive interfaces, and formal models of the state of the robot, state of the world, and information as to what has been observed.

795 citations

Journal ArticleDOI
01 May 2004
TL;DR: The article presents a synopsis of the major HRI issues in reducing the number of humans it takes to control a robot, maintaining performance with geographically distributed teams with intermittent communications, and encouraging acceptance within the existing social structure.
Abstract: Rescue robotics has been suggested by a recent DARPA/NSF study as an application domain for the research in human-robot integration (HRI). This paper provides a short tutorial on how robots are currently used in urban search and rescue (USAR) and discusses the HRI issues encountered over the past eight years. A domain theory of the search activity is formulated. The domain theory consists of two parts: 1) a workflow model identifying the major tasks, actions, and roles in robot-assisted search (e.g., a workflow model) and 2) a general information flow model of how data from the robot is fused by various team members into information and knowledge. The information flow model also captures the types of situation awareness needed by each agent in the rescue robot system. The article presents a synopsis of the major HRI issues in reducing the number of humans it takes to control a robot, maintaining performance with geographically distributed teams with intermittent communications, and encouraging acceptance within the existing social structure.

593 citations

Journal ArticleDOI
TL;DR: The requirements for the exploration mission in the Fukushima Daiichi Nuclear Power Plants are presented, the implementation is discussed, and the results of the mission are reported.
Abstract: On March 11, 2011, a massive earthquake (magnitude 9.0) and accompanying tsunami hit the Tohoku region of eastern Japan. Since then, the Fukushima Daiichi Nuclear Power Plants have been facing a crisis due to the loss of all power that resulted from the meltdown accidents. Three buildings housing nuclear reactors were seriously damaged from hydrogen explosions, and, in one building, the nuclear reactions became out of control. It was too dangerous for humans to enter the buildings to inspect the damage because radioactive materials were also being released. In response to this crisis, it was decided that mobile rescue robots would be used to carry out surveillance missions. The mobile rescue robots needed could not be delivered to the Tokyo Electric Power Company (TEPCO) until various technical issues were resolved. Those issues involved hardware reliability, communication functions, and the ability of the robots' electronic components to withstand radiation. Additional sensors and functionality that would enable the robots to respond effectively to the crisis were also needed. Available robots were therefore retrofitted for the disaster reponse missions. First, the radiation tolerance of the electronic componenets was checked by means of gamma ray irradiation tests, which were conducted using the facilities of the Japan Atomic Energy Agency (JAEA). The commercial electronic devices used in the original robot systems operated long enough (more than 100 h at a 10% safety margin) in the assumed environment (100 mGy/h). Next, the usability of wireless communication in the target environment was assessed. Such tests were not possible in the target environment itself, so they were performed at the Hamaoka Daiichi Nuclear Power Plants, which are similar to the target environment. As previously predicted, the test results indicated that robust wireless communication would not be possible in the reactor buildings. It was therefore determined that a wired communication device would need to be installed. After TEPCO's official urgent mission proposal was received, the team mounted additional devices to facilitate the installation of a water gauge in the basement of the reactor buildings to determine flooding levels. While these preparations were taking place, prospective robot operators from TEPCO trained in a laboratory environment. Finally, one of the robots was delivered to the Fukushima Daiichi Nuclear Power Plants on June 20, 2011, where it performed a number of important missions inside the buildings. In this paper, the requirements for the exploration mission in the Fukushima Daiichi Nuclear Power Plants are presented, the implementation is discussed, and the results of the mission are reported. © 2013 Wiley Periodicals, Inc. (Webpage: http://www.astro.mech.tohoku.ac.jp/)

513 citations

Journal ArticleDOI
TL;DR: Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in the authors' natural environments.
Abstract: The remarkable advances of robotics in the last fifty years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control.The current examples of soft robots represent a variety of solutions for actuation, and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments.

304 citations

Journal ArticleDOI
TL;DR: An overview of the use of robots for USAR is provided, concentrating on what robots were actually used and why, and the roles that the robots played in the response and the impact of the physical environment on the platforms.
Abstract: On September 11, 2001, the Center for Robot-Assisted Search and Rescue (CRASAR) responded within six hours to the World Trade Center (WTC) disaster; this is the first known use of robots for urban search and rescue (USAR). The University of South Florida (USF) was one of the four robot teams, and the only academic institution represented. The USF team participated onsite in the search efforts from 12-21 September 2001, collecting and archiving data on the use of all robots, in addition to actively fielding robots. This article provides an overview of the use of robots for USAR, concentrating on what robots were actually used and why. It describes the roles that the robots played in the response and the impact of the physical environment on the platforms. The quantitative and qualitative performance of the robots are summarized in terms of their components (mobility, sensors, control, communications, and power) and within the larger human-robot system. Lessons learned are offered and a synopsis of the current state of rescue robotics and activities at the CRASAR concludes the article.

280 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
82% related
Mobile robot
66.7K papers, 1.1M citations
81% related
Object detection
46.1K papers, 1.3M citations
70% related
Adaptive control
60.1K papers, 1.2M citations
70% related
Control theory
299.6K papers, 3.1M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202330
202272
202133
202073
2019104