scispace - formally typeset
Topic

Resist

About: Resist is a(n) research topic. Over the lifetime, 40991 publication(s) have been published within this topic receiving 371548 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Abstract: ▪ Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (≥50 μm), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.

2,549 citations

Journal ArticleDOI
05 Apr 1996-Science
TL;DR: In this paper, a high-throughput lithographic method with 25-nanometer resolution and smooth vertical sidewalls is proposed and demonstrated, which uses compression molding to create a thickness contrast pattern in a thin resist film carried on a substrate, followed by anisotropic etching to transfer the pattern through the entire resist thickness.
Abstract: A high-throughput lithographic method with 25-nanometer resolution and smooth vertical sidewalls is proposed and demonstrated. The technique uses compression molding to create a thickness contrast pattern in a thin resist film carried on a substrate, followed by anisotropic etching to transfer the pattern through the entire resist thickness. Metal patterns with a feature size of 25 nanometers and a period of 70 nanometers were fabricated with the use of resist templates created by imprint lithography in combination with a lift-off process. With further development, imprint lithography should allow fabrication of sub-10-nanometer structures and may become a commercially viable technique for manufacturing integrated circuits and other nanodevices.

2,336 citations

PatentDOI
04 Jun 2001-Science
TL;DR: A method of constructing <30-nanometer structures in close proximity with precise spacings is presented that uses the step-by-step application of organic molecules and metal ions as size-controlled resists on predetermined patterns, such as those formed by electron-beam lithography.
Abstract: The present invention is a method and apparatus relating to manufacturing nanostructure patterns and components using molecular science. The method includes overlaying a multilayer organic molecule resist on at least a portion of a parent structure selectively deposited on a substrate, depositing a layer over the parent structure and in contact with at least a portion of the multilayer organic resist, and removing the multilayer organic molecule resist to leave a residual structure.

2,297 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles of nano-printing are discussed, with an emphasis on the requirements on materials for the imprinting mold, surface properties, and resist materials for successful and reliable nanostructure replication.
Abstract: Nanoimprint lithography (NIL) is a nonconventional lithographic technique for high-throughput patterning of polymer nanostructures at great precision and at low costs. Unlike traditional lithographic approaches, which achieve pattern definition through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist material and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional techniques. This Review covers the basic principles of nanoimprinting, with an emphasis on the requirements on materials for the imprinting mold, surface properties, and resist materials for successful and reliable nanostructure replication.

1,528 citations

Journal ArticleDOI
TL;DR: In this article, a fabrication technique for building 3D micro-channels in polydimethylsiloxane (PDMS) elastomer is described, which allows for the stacking of many thin (less than 100-/spl mu/m) patterned PDMS layers to realize complex 3D channel paths.
Abstract: This paper describes a fabrication technique for building three-dimensional (3-D) micro-channels in polydimethylsiloxane (PDMS) elastomer. The process allows for the stacking of many thin (less than 100-/spl mu/m thick) patterned PDMS layers to realize complex 3-D channel paths. The master for each layer is formed on a silicon wafer using an epoxy-based photoresist (SU 8). PDMS is cast against the master producing molded layers containing channels and openings. To realize thin layers with openings, a sandwich molding configuration was developed that allows precise control of the PDMS thickness. The master wafer is clamped within a sandwich that includes flat aluminum plates, a flexible polyester film layer, a rigid Pyrex wafer, and a rubber sheet. A parametric study is performed on PDMS surface activation in a reactive-ion-etching system and the subsequent methanol treatment for bonding and aligning very thin individual components to a substrate. Low RF power and short treatment times are better than high RF power and long treatment times, respectively, for instant bonding. Layer-to-layer alignment of less then 15 /spl mu/m is achieved with manual alignment techniques that utilize surface tension driven self-alignment methods. A coring procedure is used to realize off-chip fluidic connections via the bottom PDMS layer, allowing the top layer to remain smooth and flat for complete optical access.

1,167 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
88% related
Thin film
275.5K papers, 4.5M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
83% related
Amorphous solid
117K papers, 2.2M citations
83% related
Photoluminescence
83.4K papers, 1.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021223
2020397
2019489
2018500
2017603