Topic
Resistor
About: Resistor is a research topic. Over the lifetime, 80729 publications have been published within this topic receiving 424270 citations. The topic is also known as: resistors & electrical resistor.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors investigated the possibility of dissipating mechanical energy with piezoelectric material shunted with passive electrical circuits, and derived the effective mechanical impedance for the piezolectric element shunted by an arbitrary circuit.
Abstract: The possibility of dissipating mechanical energy with piezoelectric material shunted with passive electrical circuits is investigated. The effective mechanical impedance for the piezoelectric element shunted by an arbitrary circuit is derived. The shunted piezoelectric is shown to possess frequency dependent stiffness and loss factor which are also dependent on the shunting circuit. The generally shunted model is specialized for two shunting circuits: the case of a resistor alone and that of a resistor and inductor. For resistive shunting, the material properties exhibit frequency dependence similar to viscoelastic materials, but are much stiffer and more independent of temperature. Shunting with a resistor and inductor introduces an electrical resonance, which can be optimally tuned to structural resonances in a manner analogous to a mechanical vibration arsorber. Techniques for analyzing systems which incorporate these shunting cases are presented and applied to a cantilevered beam experiment. The experimental results for both the resistive and resonant shunting circuits validate the shunted piezoelectric damping models.
1,685 citations
TL;DR: Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces, and capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.
Abstract: Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.
1,233 citations
Book•
31 May 1991
TL;DR: In this paper, the authors present a comprehensive overview of transmission line components and discontinuities, including coupled lines, capacitors, and resistors, as well as a glossary of special functions.
Abstract: Generalized Transmission Lines. Physical Transmission Lines. Coupled Lines. Transmission Line Components and Discontinuities. Inductors. Capacitors. Resistors. Printed Circuit Fabrication. Cable Dielectrics. Wire Gauges. Special Functions. Glossary. Appendices.
880 citations
TL;DR: In this article, a solution is described that makes it possible for wind turbines using doubly-fed induction generators to stay connected to the grid during grid faults by limiting the high current in the rotor in order to protect the converter and to provide a bypass for this current via a set of resistors that are connected to rotor windings.
Abstract: In this paper, a solution is described that makes it possible for wind turbines using doubly-fed induction generators to stay connected to the grid during grid faults. The key of the solution is to limit the high current in the rotor in order to protect the converter and to provide a bypass for this current via a set of resistors that are connected to the rotor windings. With these resistors, it is possible to ride through grid faults without disconnecting the turbine from the grid. Because the generator and converter stay connected, the synchronism of operation remains established during and after the fault and normal operation can be continued immediately after the fault has been cleared. An additional feature is that reactive power can be supplied to the grid during long dips in order to facilitate voltage restoration. A control strategy has been developed that takes care of the transition back to normal operation. Without special control action, large transients would occur.
879 citations
TL;DR: In this article, the small-signal impedance of three-phase grid-tied inverters with feedback control and phase-locked loop (PLL) in the synchronous reference ( d-q ) frame is analyzed.
Abstract: This paper analyzes the small-signal impedance of three-phase grid-tied inverters with feedback control and phase-locked loop (PLL) in the synchronous reference ( d-q ) frame. The result unveils an interesting and important feature of three-phase grid-tied inverters – namely, that its q–q channel impedance behaves as a negative incremental resistor. Moreover, this paper shows that this behavior is a consequence of grid synchronization, where the bandwidth of the PLL determines the frequency range of the resistor behavior, and the power rating of the inverter determines the magnitude of the resistor. Advanced PLL, current, and power control strategies do not change this feature. An example shows that under weak grid conditions, a change of the PLL bandwidth could lead the inverter system to unstable conditions as a result of this behavior. Harmonic resonance and instability issues can be analyzed using the proposed impedance model. Simulation and experimental measurements verify the analysis.
825 citations