scispace - formally typeset
Search or ask a question
Topic

Resolution (electron density)

About: Resolution (electron density) is a research topic. Over the lifetime, 14559 publications have been published within this topic receiving 332721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores that can, in principle, reach molecular-scale resolution is developed.
Abstract: We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.

7,213 citations

Journal ArticleDOI
TL;DR: MotionCor2 software corrects for beam-induced sample motion, improving the resolution of cryo-EM reconstructions.
Abstract: MotionCor2 software corrects for beam-induced sample motion, improving the resolution of cryo-EM reconstructions.

5,491 citations

Journal ArticleDOI
Julia Robinson1
TL;DR: The paper concludes with a discussion of several principles which are applicable to the design of efficient proof-procedures employing resolution as the basle logical process.
Abstract: :tb.~tract. Theorem-proving on the computer, using procedures based on the fund~mental theorem of Herbrand concerning the first-order predicate etdeulus, is examined with ~ view towards improving the efticieney and widening the range of practical applicability of these procedures. A elose analysis of the process of substitution (of terms for variables), and the process of t ruth-funct ional analysis of the results of such substitutions, reveals that both processes can be combined into a single new process (called resolution), i terating which is vastty more ef[ieient than the older cyclic procedures consisting of substitution stages alternating with truth-functional analysis stages. The theory of the resolution process is presented in the form of a system of first<~rder logic with .just one inference principle (the resolution principle). The completeness of the system is proved; the simplest proof-procedure based oil the system is then the direct implementation of the proof of completeness. Howew~r, this procedure is quite inefficient, ~nd the paper concludes with a discussion of several principles (called search principles) which are applicable to the design of efficient proof-procedures employing resolution as the basle logical process.

4,132 citations

Journal Article
TL;DR: In this paper, the authors proposed a new type of scanning fluorescence microscope capable of resolving 35 nm in the far field by employing stimulated emission to inhibit the fluorescence process in the outer regions of the excitation point spread function.
Abstract: We propose a new type of scanning fluorescence microscope capable of resolving 35 nm in the far field. We overcome the diffraction resolution limit by employing stimulated emission to inhibit the fluorescence process in the outer regions of the excitation point-spread function. In contrast to near-field scanning optical microscopy, this method can produce three-dimensional images of translucent specimens.

3,987 citations

Journal ArticleDOI
TL;DR: Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide‐field fluorescence microscope with strikingly increased clarity compared to both conventional and confocal microscopes.
Abstract: Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide-field fluorescence microscope. The sample is illuminated with a series of excitation light patterns, which cause normally inaccessible high-resolution information to be encoded into the observed image. The recorded images are linearly processed to extract the new information and produce a reconstruction with twice the normal resolution. Unlike confocal microscopy, the resolution improvement is achieved with no need to discard any of the emission light. The method produces images of strikingly increased clarity compared to both conventional and confocal microscopes.

3,274 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
66% related
Ion
107.5K papers, 2M citations
64% related
Phase transition
82.8K papers, 1.6M citations
64% related
Nucleation
63.8K papers, 1.6M citations
63% related
Hydrogen
132.2K papers, 2.5M citations
63% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021421
2020453
2019519
2018545
2017477