scispace - formally typeset
Search or ask a question

Showing papers on "Respiratory epithelium published in 2012"


Journal ArticleDOI
TL;DR: Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.
Abstract: Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.

772 citations


Journal ArticleDOI
TL;DR: Evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway is presented and that genetic variation contributes to individual differences in susceptibility to respiratory infection is suggested.
Abstract: Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.

458 citations


Journal ArticleDOI
TL;DR: It is demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction and is adapted to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease.

322 citations


Journal ArticleDOI
TL;DR: It is found that conditionally reprogrammed CRCs share characteristics of adult stem cells and exhibit up-regulated expression of α6 and β1 integrins and decreased Notch signaling and an increased level of nuclear β-catenin.
Abstract: The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-27632, conditionally induces an indefinite proliferative state in primary mammalian epithelial cells. These conditionally reprogrammed cells (CRCs) are karyotype-stable and nontumorigenic. Because self-renewal is a recognized property of stem cells, we investigated whether Y-27632 and feeder cells induced a stem-like phenotype. We found that CRCs share characteristics of adult stem cells and exhibit up-regulated expression of α6 and β1 integrins, ΔNp63α, CD44, and telomerase reverse transcriptase, as well as decreased Notch signaling and an increased level of nuclear β-catenin. The induction of CRCs is rapid (occurs within 2 d) and results from reprogramming of the entire cell population rather than the selection of a minor subpopulation. CRCs do not overexpress the transcription factor sets characteristic of embryonic or induced pluripotent stem cells (e.g., Sox2, Oct4, Nanog, or Klf4). The induction of CRCs is also reversible, and removal of Y-27632 and feeders allows the cells to differentiate normally. Thus, when CRCs from ectocervical epithelium or tracheal epithelium are placed in an air–liquid interface culture system, the cervical cells form a well differentiated stratified squamous epithelium, whereas the tracheal cells form a ciliated airway epithelium. We discuss the diagnostic and therapeutic opportunities afforded by a method that can generate adult stem-like cells in vitro without genetic manipulation.

269 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggested that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.
Abstract: Airway epithelial cells (AECs) provide the first line of defense in the respiratory tract and are the main target of respiratory viruses. Here, using oligonucleotide and protein arrays, we analyze the infection of primary polarized human AEC cultures with influenza virus and respiratory syncytial virus (RSV), and we show that the immune response of AECs is quantitatively and qualitatively virus specific. Differentially expressed genes (DEGs) specifically induced by influenza virus and not by RSV included those encoding interferon B1 (IFN-B1), type III interferons (interleukin 28A [IL-28A], IL-28B, and IL-29), interleukins (IL-6, IL-1A, IL-1B, IL-23A, IL-17C, and IL-32), and chemokines (CCL2, CCL8, and CXCL5). Lack of type I interferon or STAT1 signaling decreased the expression and secretion of cytokines and chemokines by the airway epithelium. We also observed strong basolateral polarization of the secretion of cytokines and chemokines by human and murine AECs during infection. Importantly, the antiviral response of human AECs to influenza virus or to RSV correlated with the infection signature obtained from peripheral blood mononuclear cells (PBMCs) isolated from patients with acute influenza or RSV bronchiolitis, respectively. IFI27 (also known as ISG12) was identified as a biomarker of respiratory virus infection in both AECs and PBMCs. In addition, the extent of the transcriptional perturbation in PBMCs correlated with the clinical disease severity. Our results demonstrate that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggest that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.

181 citations


Journal ArticleDOI
TL;DR: The findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo, and may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Abstract: Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.

175 citations


Journal ArticleDOI
TL;DR: This study is the first to characterize airway epithelial NLRP3 inflammasome-mediated immune responses to PM exposure, which might have implications in patients with asthma and other lung diseases.
Abstract: Background The airway epithelium is the first line of defense against inhaled insults and therefore must be capable of coordinating appropriate inflammatory and immune responses. Objective We sought to test the hypothesis that the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, an intracellular danger-sensing complex, plays a critical role in airway epithelium–mediated immune responses to urban particulate matter (PM) exposure. Methods In this study we (1) identified NLRP3 and caspase-1 expression in human airway epithelium bronchus and primary cells, (2) characterized NLRP3 inflammasome–mediated IL-1β production from human airway epithelium in response to PM, and (3) performed in vivo PM exposure experiments with wild-type and Nlrp3 −/− mice. Results Our results demonstrate that human airway epithelium contains a functional NLRP3 inflammasome that responds to PM exposure with caspase-1 cleavage and production of IL-1β. Exposure of Nlrp3 −/− and wild-type mice to PM in vivo demonstrates NLRP3-dependent production of IL-1β in the lung, airway neutrophilia, and increases in CD11c +hi /MHC class II +hi cell numbers in intrathoracic lymph nodes. Conclusion Our study is the first to characterize airway epithelial NLRP3 inflammasome–mediated immune responses to PM exposure, which might have implications in patients with asthma and other lung diseases.

162 citations


Journal ArticleDOI
TL;DR: The goal of this article is to summarize the recent developments in the understanding of cilia dysfunction and mucociliary clearance in CRS.
Abstract: BackgroundCilia are complex and powerful cellular structures of the respiratory mucosa that play a critical role in airway defense. Respiratory epithelium is lined with cilia that perform an integr...

138 citations


Journal ArticleDOI
TL;DR: The airway epithelium can no longer be regarded as a mere structural barrier, but must be considered an active player in the pathogenesis of asthma and other allergic disorders.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the airway epithelial cells (AECs) from asthmatic children differentially express TGF-β2, VEGF, ADAM33, and periostin compared with cells from atopic nonasthmatic and healthy children intrinsically or in response to IL-4/IL-13 stimulation.
Abstract: Background The airway epithelium can express factors that drive subepithelial airway remodeling. TGF-β2, vascular epithelial growth factor (VEGF), a disintegrin and metalloprotease 33 (ADAM33), and periostin are hypothesized to be involved in subepithelial remodeling and are overexpressed in adult asthmatic airways. Epidemiologic data suggest that lung function deficits in asthmatic patients are acquired in childhood. Objectives We sought to determine whether airway epithelial cells (AECs) from asthmatic children differentially express TGF-β2, VEGF, ADAM33, or periostin compared with cells from atopic nonasthmatic and healthy children intrinsically or in response to IL-4/IL-13 stimulation. Methods Bronchial and nasal epithelial cells were obtained from brushings from well-characterized asthmatic (n = 16), atopic nonasthmatic (n = 9), and healthy (n = 15) children after achievement of anesthesia for elective procedures. After differentiation at an air-liquid interface (ALI) for 3 weeks, conditioned media were sampled and RNA was extracted from unstimulated and IL-4/IL-13–stimulated cultures. TGF-β2 and VEGF levels were measured with ELISA. ADAM33 and periostin expression was assessed by using real-time PCR. Results TGF-β2 and VEGF production was significantly greater in bronchial and nasal ALI cultures from asthmatic children than in cultures from atopic nonasthmatic and healthy children. TGF-β2 levels increased significantly in asthmatic cultures after IL-4/IL-13 stimulation. Within-subject correlation between nasal and bronchial ALI production of TGF-β2 ( r = 0.64, P = .001) and VEGF ( r = 0.73, P P P Conclusion AECs from asthmatic children differentially express TGF-β2, VEGF, and periostin compared with cells from atopic nonasthmatic and healthy children. Nasal epithelial cells might be a suitable surrogate for bronchial cells that could facilitate investigation of the airway epithelium in future longitudinal pediatric studies.

136 citations


Journal ArticleDOI
TL;DR: It is shown that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours, which may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory.
Abstract: Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.

Journal ArticleDOI
Ju-Hyun Gong1, Daekeun Shin1, Seon-Young Han1, Jung-Lye Kim1, Young-Hee Kang1 
TL;DR: Dietary kaempferol is effective in ameliorating allergic and inflammatory airway diseases through disturbing NF-κB signaling and blunting eosinophil accumulation in airway and lung tissue.
Abstract: The airway epithelium is thought to play an important role in the pathogenesis of asthma. Airway epithelial activation may contribute to inflammatory and airway-remodeling events characteristic of asthma. Kaempferol, a flavonoid with antioxidative and antitumor properties, has been studied as an antiinflammatory agent. However, little is known regarding its effects on allergic asthma. Human airway epithelial BEAS-2B cells and eosinophils were used to investigate the effects of kaempferol on endotoxin- or cytokine-associated airway inflammation. Kaempferol, nontoxic at 1-20 μmol/L, suppressed LPS-induced eotaxin-1 protein expression that may be mediated, likely via Janus kinase 2 (JAK2) JAK2 signaling. Additionally, 1-20 μmol/L kaempferol dose-dependently attenuated TNFα-induced expression of epithelial intracellular cell adhesion molecule-1 and eosinophil integrin β2, thus encumbering the eosinophil-airway epithelium interaction. Kaempferol blunted TNFα-induced airway inflammation by attenuating monocyte chemoattractant protein-1 transcription, possibly by disturbing NF-κB signaling. This study further investigated antiallergic activity of kaempferol in BALB/c mice sensitized with ovalbumin (OVA) and challenged with a single dose of OVA. Oral administration of kaempferol attenuated OVA challenge-elevated expression of eotaxin-1 and eosinophil major basic protein via the blockade of NF-κB transactivation, thereby blunting eosinophil accumulation in airway and lung tissue. Therefore, dietary kaempferol is effective in ameliorating allergic and inflammatory airway diseases through disturbing NF-κB signaling.

Journal ArticleDOI
TL;DR: The susceptibility and membrane damage to respiratory epithelium following inhalation of NPs will depend on both surface chemistry (e.g., cationic) and nano-size.
Abstract: The respiratory epithelium is a significant target of inhaled, nano-sized particles, the biological reactivity of which will depend on its physicochemical properties. Surface-modified, 50 and 100 nm, polystyrene latex nanoparticles (NPs) were used as model particles to examine the effect of particle size and surface chemistry on transformed human alveolar epithelial type 1-like cells (TT1). Live images of TT1 exposed to amine-modified NPs taken by hopping probe ion conductance microscopy revealed severe damage and holes on cell membranes that were not observed with other types of NPs. This paralleled induction of cell detachment, cytotoxicity and apoptotic (caspase-3/7 and caspase-9) cell death, and increased release of CXCL8 (IL-8). In contrast, unmodified, carboxyl-modified 50 nm NPs and the 100 nm NPs did not cause membrane damage, and were less reactive. Thus, the susceptibility and membrane damage to respiratory epithelium following inhalation of NPs will depend on both surface chemistry (e.g., cationic) and nano-size.

Journal ArticleDOI
TL;DR: Nitric oxide augmentation is unlikely to be beneficial in common PCD phenotypes, but it has potential in the treatment of secondary dyskinesias and may also improve treatment of bacterial infections, particularly where biofilms are implicated.
Abstract: Nitric oxide is continually synthesised in the respiratory epithelium and is upregulated in response to infection or inflammation. Primary ciliary dyskinesia (PCD) is characterised by recurrent sinopulmonary infections due to impaired mucociliary clearance. Despite chronic infections, nasal nitric oxide in such patients is markedly reduced and is used as a screening test for this condition. These low levels were first described >15 yrs ago but the underlying mechanisms have yet to be fully elucidated. We review epithelial nitric oxide synthesis, release and measurement in the upper airways with particular reference to PCD. The key hypotheses that have been proposed to explain the low nitric oxide levels in this condition are explored and the potential benefits of augmenting airway nitric oxide levels are considered. Further work in these patients clarifying both whether the respiratory epithelium is able to biosynthesise normal levels of nitric oxide and the role played by abnormalities in the anatomy of the paranasal sinuses is essential. While nitric oxide augmentation is unlikely to be beneficial in common PCD phenotypes, it has potential in the treatment of secondary dyskinesias and may also improve treatment of bacterial infections, particularly where biofilms are implicated.

Journal ArticleDOI
TL;DR: It is shown that AGR2 increases with mucin overproduction in individuals with asthma and in mouse models of allergic airway disease.
Abstract: Mucins are gel-forming proteins that are responsible for the characteristic viscoelastic properties of mucus. Mucin overproduction is a hallmark of asthma, but the cellular requirements for airway mucin production are poorly understood. The endoplasmic reticulum (ER) protein anterior gradient homolog 2 (AGR2) is required for production of the intestinal mucin MUC2, but its role in the production of the airway mucins MUC5AC and MUC5B is not established. Microarray data were analyzed to examine the relationship between AGR2 and MUC5AC expression in asthma. Immunofluorescence was used to localize AGR2 in airway cells. Coimmunoprecipitation was used to identify AGR2-immature MUC5AC complexes. Agr2−/− mice were used to determine the role of AGR2 in allergic airway disease. AGR2 localized to the ER of MUC5AC- and MUC5B-producing airway cells and formed a complex with immature MUC5AC. AGR2 expression increased together with MUC5AC expression in airway epithelium from “Th2-high” asthmatics. Allergen-challenged Agr2−/− mice had greater than 50% reductions in MUC5AC and MUC5B proteins compared with allergen-challenged wild-type mice. Impaired mucin production in Agr2−/− mice was accompanied by an increase in the proportion of mucins contained within the ER and by evidence of ER stress in airway epithelium. This study shows that AGR2 increases with mucin overproduction in individuals with asthma and in mouse models of allergic airway disease. AGR2 interacts with immature mucin in the ER and loss of AGR2 impairs allergen-induced MUC5AC and MUC5B overproduction.

Book ChapterDOI
TL;DR: A high-fidelity system for primary culture of mouse tracheal epithelial cells described in this chapter allows the assessment of global responses and those of specific cell subpopulations within the airway epithelium.
Abstract: Airway epithelial cell biology has been greatly advanced by studies of genetically defined and modified mice; however it is often difficult to isolate, manipulate, and assay epithelial cell-specific responses in vivo. In vitro proliferation and differentiation of mouse airway epithelial cells are made possible by a high-fidelity system for primary culture of mouse tracheal epithelial cells described in this chapter. Using this method, epithelial cells purified from mouse tracheas proliferate in growth factor-enriched medium. Subsequent culture in defined medium and the use of the air-liquid interface condition result in the development of well-differentiated epithelia composed of ciliated and non-ciliated cells with characteristics of native airways. Methods are also provided for manipulation of differentiation and analysis of differentiation and gene expression. These approaches allow the assessment of global responses and those of specific cell subpopulations within the airway epithelium.

Journal ArticleDOI
TL;DR: The importance of Foxp1/4 in restricting cell fate choices during development and regeneration is demonstrated, thereby providing the proper balance of functional epithelial lineages in the lung.
Abstract: The molecular pathways regulating cell lineage determination and regeneration in epithelial tissues are poorly understood. The secretory epithelium of the lung is required for production of mucus to help protect the lung against environmental insults, including pathogens and pollution, that can lead to debilitating diseases such as asthma and chronic obstructive pulmonary disease. We show that the transcription factors Foxp1 and Foxp4 act cooperatively to regulate lung secretory epithelial cell fate and regeneration by directly restricting the goblet cell lineage program. Loss of Foxp1/4 in the developing lung and in postnatal secretory epithelium leads to ectopic activation of the goblet cell fate program, in part, through de-repression of the protein disulfide isomerase anterior gradient 2 (Agr2). Forced expression of Agr2 is sufficient to promote the goblet cell fate in the developing airway epithelium. Finally, in a model of lung secretory cell injury and regeneration, we show that loss of Foxp1/4 leads to catastrophic loss of airway epithelial regeneration due to default differentiation of secretory cells into the goblet cell lineage. These data demonstrate the importance of Foxp1/4 in restricting cell fate choices during development and regeneration, thereby providing the proper balance of functional epithelial lineages in the lung.

Journal ArticleDOI
TL;DR: Findings indicate that sex hormones influence the function of a key component of the mucociliary apparatus and may contribute to the sex disparity present in airway diseases and provide therapeutic targets for the treatment of these debilitatingAirway diseases.
Abstract: Previous studies have demonstrated a female disadvantage in airway diseases, such as asthma and bronchiectasis. The basis for this sex disparity is unknown. We hypothesized that the female sex hormone, progesterone (P4), inhibits functions of the normal airway mucociliary apparatus. P4 receptor (PR) expression was evaluated in human lung and cultured primary human airway epithelial cells isolated from male and female lung transplant donors. PR expression was restricted to the proximal region of the cilia of airway epithelia, and was similar in men and women. Expression of isoform PR-B was more abundant than PR-A in cells from both sexes. Airway epithelial cell exposure to P4 decreased cilia beat frequency (CBF) by 42.3% (±7.2). Inhibition of CBF was prevented by coadministration of P4 with the active form of estrogen, 17β-estradiol, or the PR antagonist, mifepristone. P4 inhibition was time and dose dependent, with a significant decrease by 8 hours and maximal effect at 24 hours, accompanied by translocation of PR from the cilia to the nucleus. Inhibition of cilia beat was also prevented by treatment of cells with actinomycin D, suggesting that CBF inhibition is a transcriptionally mediated event. Together, these findings indicate that sex hormones influence the function of a key component of the mucociliary apparatus. These mechanisms may contribute to the sex disparity present in airway diseases and provide therapeutic targets for the treatment of these debilitating airway diseases.

Journal ArticleDOI
TL;DR: In vitro and in vivo studies show that mechanically stressed bronchial epithelial cells are a source of secreted TF and that exosomes are potentially a key carrier of the TF signal.
Abstract: Background Tissue factor (TF), a primary initiator of blood coagulation, also plays a pivotal role in angiogenesis. TF expression in the airways is associated with asthma, a disease characterized in part by subepithelial angiogenesis. Objectives To determine potential sources of TF and the mechanisms of its availability in the lung microenvironment. Methods Normal human bronchial epithelial cells grown in air-liquid interface culture were subjected to a compressive stress of 30 cm H 2 O; this is comparable to that generated in the airway epithelium during bronchoconstriction in asthma. Conditioned media and cells were harvested to measure TF mRNA and TF protein. We also tested bronchoalveolar lavage fluid and airway biopsies from asthmatic patients and healthy controls for TF. Results TF mRNA was upregulated 2.2-fold after 3 hours of stress compared with unstressed cells. Intracellular and secreted TF proteins were enhanced 1.6-fold and more than 50-fold, respectively, compared with those of control cells after the onset of compression. The amount of TF in the bronchoalveolar lavage fluid from patients with asthma was found at mean concentrations that were 5 times greater than those of healthy controls. Immunohistochemical staining of endobronchial biopsies identified epithelial localization of TF with increased expression in asthma. Exosomes isolated from the conditioned media of normal human bronchial epithelial cells and the bronchoalveolar lavage fluid of asthmatic subjects by ultracentrifugation contained TF. Conclusions Our in vitro and in vivo studies show that mechanically stressed bronchial epithelial cells are a source of secreted TF and that exosomes are potentially a key carrier of the TF signal.

Journal ArticleDOI
TL;DR: It is found that only aldehyde dehydrogenase (ALDH)hi basal and duct cells were capable of sphere formation, and global inhibition of ALDH, as well as specific inhibition of the ALDH2 isoform, inhibited self‐renewal of both basal andduct cells, thereby producing fewer and smaller spheres.
Abstract: Basal cells and submucosal gland (SMG) duct cells have been isolated and shown to be stem/progenitor cell populations for the murine airway epithelium. However, methods for the isolation of basal and SMG duct cells from human airways have not been defined. We used an optimized two-step enzyme digestion protocol to strip the surface epithelium from tracheal specimens separate from SMG cells, and we then sorted the basal and duct stem/progenitors using fluorescence-activated cell sorting. We used nerve growth factor receptor, as well as a combination of CD166 and CD44, to sort basal cells and also used CD166 to isolate SMG duct cells. Sorted stem/progenitor cells were cultured to characterize their self-renewal and differentiation ability. Both basal and SMG duct cells grew into spheres. Immunostaining of the spheres showed mostly dense spheres with little to no central lumen. The spheres expressed cytokeratins 5 and 14, with some mucus- and serous-secreting cells. The sphere-forming efficiency and the rate of growth of the spheres varied widely between patient samples and correlated with the degree of hyperplasia of the epithelium. We found that only aldehyde dehydrogenase (ALDH)(hi) basal and duct cells were capable of sphere formation. Global inhibition of ALDH, as well as specific inhibition of the ALDH2 isoform, inhibited self-renewal of both basal and duct cells, thereby producing fewer and smaller spheres. In conclusion, we have developed methods to isolate basal and SMG duct cells from the surface epithelium and SMGs of human tracheas and have developed an in vitro model to characterize their self-renewal and differentiation.

Journal ArticleDOI
TL;DR: It is found that persistent activation of canonical Wnt signaling within distal lung endoderm was permissive for normal development of alveolar epithelium, yet led to the loss of developing bronchiolar epithelia and ectasis of distal conducting airways.
Abstract: Wnt–β-catenin signaling regulates cell fate during organ development and postnatal tissue maintenance, but its contribution to specification of distinct lung epithelial lineages is still unclear. To address this question, we used a Cre recombinase (Cre)-LoxP approach to activate canonical Wnt signaling ectopically in developing lung endoderm. We found that persistent activation of canonical Wnt signaling within distal lung endoderm was permissive for normal development of alveolar epithelium, yet led to the loss of developing bronchiolar epithelium and ectasis of distal conducting airways. Activation of canonical Wnt led to ectopic expression of a lymphoid-enhancing factor and a T-cell factor (LEF and TCF, respectively) and absence of SRY (sex-determining region Y)-box 2 (SOX2) and tumor protein p63 (p63) expression in proximal derivatives. Conditional loss of SOX2 in airways phenocopied epithelial differentiation defects observed with ectopic activation of canonical Wnt. Our data suggest that Wnt negatively regulates a SOX2-dependent signaling program required for developmental progression of the bronchiolar lineage.

Journal ArticleDOI
TL;DR: Direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium, which may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.
Abstract: The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naive wild-type (WT) mice were challenged once intranasally with Alternaria. Naive WT mice developed significant bronchoalveolar lavage eosinophilia following Alternaria challenge when analyzed 24 h later. In contrast to Alternaria, neither Aspergillus nor Candida induced bronchoalveolar lavage eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naive WT mice had a >20-fold increase in the level of expression of found in inflammatory zone 1 (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression as early as 3 h after a single Alternaria challenge that persisted for ≥5 d and was significantly reduced in STAT6-deficient, but not protease-activated receptor 2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, whereas STAT6 present in bone marrow-derived cells contributed to airway eosinophilia. Studies investigating which cells in the nonchallenged lung bind FIZZ1 demonstrated that CD45(+)CD11c(+) cells (macrophages and dendritic cells), as well as collagen-1-producing CD45(-) cells (fibroblasts), can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.

Journal ArticleDOI
TL;DR: Aspartate proteases from Alternaria induce cytokine production and calcium response in airway epithelium that is mediated through PAR-2, which may be implicated in the development and exacerbation of airway allergic disease.
Abstract: Rationale: Recent studies suggest that host immune responses to environmental fungi may play an important role in the development of allergic diseases, such as human asthma Epithelium is considered an active participant in allergic inflammation We previously reported that aspartate protease from Alternari a induces the activation and degranulation of human eosinophils that are mediated through proteaseactivated receptor 2 (PAR-2) However, our current knowledge on the innate immune responses of epithelium to environmental fungi is very limited We investigated the responses of epithelium to fungi and the mechanisms of these responses Methods: Human airway epithelial cell line BEAS2B and Calu-3 (both from American Type Culture Collection) were incubated with PAR-2 peptides and extracts of various fungi The cellular responses, including GM-CSF, interleukin (IL)-6, IL-8, eotaxin, eotaxin-2 and RANTES production as well as increases in intracellular calcium concentration ([Ca 2+ ] i ),

Journal ArticleDOI
TL;DR: It is concluded that cholinergic airway epithelial cells sense bacterial QSM in the airway lining fluid and communicate this to the CNS via ACh release and nicotinic stimulation of sensory neurons.

Journal ArticleDOI
TL;DR: Ex vivo cultures of fully differentiated bronchial epithelium from endobronchial biopsy specimens maintain inherent phenotypic differences specifically related to the severity of asthma.
Abstract: Background Structural changes to the airways are features of severe asthma. The bronchial epithelium facilitates this remodeling process. Learning about the changes that develop in the airway epithelium could improve our understanding of asthma pathogenesis and lead to new therapeutic approaches. Objective We sought to determine the feasibility and relevance of air-liquid interface cultures of bronchial epithelium derived from endobronchial biopsy specimens of patients with different severities of asthma for studying the airway epithelium. Methods Human bronchial epithelial cells derived from endobronchial biopsy specimens of patients with mild and severe asthma were maintained in culture for 21 days in an air-liquid interface to reproduce a fully differentiated airway epithelium. Initially, features of remodeling that included epithelial and subepithelial layers, as well as mucus production, were assessed in paraffin-embedded endobronchial biopsy specimens to evaluate morphologic characteristics of asthmatic patients' epithelia. Ex vivo differentiated epithelia were then analyzed for morphology and function based on ultrastructural analysis, IL-8 release, lipoxin A 4 generation, mucin production, and lipoxygenase gene expression. Results Morphologic and inflammatory imbalances initially observed in endobronchial biopsy specimens obtained from patients with severe or mild asthma persisted in the air-liquid interface reconstituted epithelium throughout the differentiation process to 21 days. Epithelium from patients with severe asthma produced greater levels of mucin, released more IL-8, and produced lower levels of lipoxin A 4 than that from patients with mild asthma. Expression of 15-lipoxygenase 2 was increased in epithelium from patients with severe asthma, whereas expression levels of MUC5AC, MUC5B, 5-lipoxygenase, and 15-lipoxygeanse 1 were similar to those of patients with mild asthma. Conclusion Ex vivo cultures of fully differentiated bronchial epithelium from endobronchial biopsy specimens maintain inherent phenotypic differences specifically related to the severity of asthma.

Journal ArticleDOI
TL;DR: A 14 μm cut-off length is demonstrated for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm to demonstrate knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Abstract: Background The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo.

Journal ArticleDOI
TL;DR: Evidence is provided that the own body can be used as bioreactor to promote in vivo tissue engineering replacement and the beneficial effect of additional pharmaceutical intervention for an improved engraftment of the transplant is demonstrated.

Journal ArticleDOI
TL;DR: Cotransfection experiments demonstrate that miR‐146a's regulation of pressure‐induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6, andMiR‐ 146a is a mechanosensitive miRNA that is rapidly up‐regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia.
Abstract: Mechanical ventilation generates biophysical forces, including high transmural pressures, which exacerbate lung inflammation This study sought to determine whether microRNAs (miRNAs) respond to this mechanical force and play a role in regulating mechanically induced inflammation Primary human small airway epithelial cells (HSAEpCs) were exposed to 12 h of oscillatory pressure and/or the proinflammatory cytokine TNF-α Experiments were also conducted after manipulating miRNA expression and silencing the transcription factor NF-κB or toll-like receptor proteins IRAK1 and TRAF6 NF-κB activation, IL-6/IL-8/IL-1β cytokine secretion, miRNA expression, and IRAK1/TRAF6 protein levels were monitored A total of 12 h of oscillatory pressure and TNF-α resulted in a 5- to 7-fold increase in IL-6/IL-8 cytokine secretion, and oscillatory pressure also resulted in a time-dependent increase in IL-6/IL-8/IL-1β cytokine secretion Pressure and TNF-α also resulted in distinct patterns of miRNA expression, with miR-146a being the most deregulated miRNA Manipulating miR-146a expression altered pressure-induced cytokine secretion Silencing of IRAK1 or TRAF6, confirmed targets of miR-146a, resulted in a 3-fold decrease in pressure-induced cytokine secretion Cotransfection experiments demonstrate that miR-146a's regulation of pressure-induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6 MiR-146a is a mechanosensitive miRNA that is rapidly up-regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia—Huang, Y, Crawford, M, Higuita-Castro, N, Nana-Sinkam, P, Ghadiali, S N miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium

Journal ArticleDOI
TL;DR: The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes.
Abstract: Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes.

Journal ArticleDOI
31 Oct 2012-PLOS ONE
TL;DR: NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs.
Abstract: Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD.