scispace - formally typeset
Search or ask a question

Showing papers on "Respiratory epithelium published in 2016"


Journal ArticleDOI
TL;DR: This work shows that dual inhibition of SMAD signaling pathways enables robust expansion of primary epithelial basal cell populations in airway epithelia, and finds that TGFβ/BMP/SMAD pathway signaling is strongly activated in luminal and suprabasal cells of several epithelium, but suppressed in p63+ basal cells.

291 citations


Journal ArticleDOI
TL;DR: The authors' method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.
Abstract: Rationale: Stem cell–based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell–seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts.Objectives: To define a scalable cell culture system to deliver airway epithelium to clinical grafts.Methods: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quant...

162 citations


Journal ArticleDOI
TL;DR: Significant roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways are demonstrated.
Abstract: Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.

150 citations


Journal ArticleDOI
TL;DR: It is shown that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium, and nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterialBiofilm formation.
Abstract: Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients’ acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.

131 citations


Journal ArticleDOI
TL;DR: CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines and in vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition.
Abstract: Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD. Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE), and necrotic cell death (membrane integrity by propidium iodide staining) and DAMP release (i.e., double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, ATP) were analyzed. Subsequently, BEAS-2B cells were exposed to DAMP-containing supernatant of CS-induced necrotic cells, and the release of proinflammatory mediators [C-X-C motif ligand 8 (CXCL-8), IL-6] was evaluated. Furthermore, mice were exposed to CS in the presence and absence of the necroptosis inhibitor necrostatin-1, and levels of DAMPs and inflammatory cell numbers were determined in bronchoalveolar lavage fluid. CSE induced a significant increase in the percentage of necrotic cells and DAMP release in BEAS-2B cells. Stimulation of BEAS-2B cells with supernatant of CS-induced necrotic cells induced a significant increase in the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene 88-dependent fashion. In mice, exposure of CS increased the levels of DAMPs and numbers of neutrophils in bronchoalveolar lavage fluid, which was statistically reduced upon treatment with necrostatin-1. Together, we showed that CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines. In vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition.

127 citations


Journal ArticleDOI
TL;DR: In the mouse airway epithelium, regeneration after injury involves transient downregulation of BMP signaling to promote proliferation, followed by cell shedding to restore cell density, which reveals crucial roles for both B MP signaling and cell shedding in homeostasis of the respiratory epithelia.
Abstract: The pseudostratified epithelium of the lung contains ciliated and secretory luminal cells and basal stem/progenitor cells. To identify signals controlling basal cell behavior we screened factors that alter their self-renewal and differentiation in a clonal organoid (tracheosphere) assay. This revealed that inhibitors of the canonical BMP signaling pathway promote proliferation but do not affect lineage choice, whereas exogenous Bmp4 inhibits proliferation and differentiation. We therefore followed changes in BMP pathway components in vivo in the mouse trachea during epithelial regeneration from basal cells after injury. The findings suggest that BMP signaling normally constrains proliferation at steady state and this brake is released transiently during repair by the upregulation of endogenous BMP antagonists. Early in repair, the packing of epithelial cells along the basal lamina increases, but density is later restored by active extrusion of apoptotic cells. Systemic administration of the BMP antagonist LDN-193189 during repair initially increases epithelial cell number but, following the shedding phase, normal density is restored. Taken together, these results reveal crucial roles for both BMP signaling and cell shedding in homeostasis of the respiratory epithelium.

122 citations


Journal ArticleDOI
11 Nov 2016-Cells
TL;DR: More research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases.
Abstract: Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.

108 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells, as well as the role of fungal virulence factors, and patterns ofFungal gene expression characteristic of early infection are described.
Abstract: Aspergillus fumigatus is an environmental filamentous fungus which also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell. The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with airway epithelial cells is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and airway epithelial cells, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by airway epithelial cells, the immune response of airway epithelial cells, as well as the role of fungal virulence factors and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis.

107 citations


Journal ArticleDOI
TL;DR: Data from high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death.
Abstract: The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.

104 citations


Journal ArticleDOI
TL;DR: A quantitative profile of the distribution of epithelial progenitor populations in human lungs is provided for the first time, showing compelling evidence for dysregulation and aberrant differentiation of these populations in IPF.
Abstract: In the human lung, epithelial progenitor cells in the airways give rise to the differentiated pseudostratified airway epithelium. In mice, emerging evidence confers a progenitor function to cytokeratin 5 (KRT5+) or cytokeratin 14 (KRT14+)-positive basal cells of the airway epithelium. Little is known, however, about the distribution of progenitor subpopulations in the human lung, particularly about aberrant epithelial differentiation in lung disease, such as idiopathic pulmonary fibrosis (IPF). Here, we used multi-color immunofluorescence analysis to detect and quantify the distribution of airway epithelial progenitor subpopulations in human lungs obtained from healthy donors or IPF patients. In lungs from both, healthy donors and IPF patients, we detected KRT5+KRT14-, KRT5-KRT14+ and KRT5+KRT14+ populations in the proximal airways. KRT14+ cells, however, were absent in the distal airways of healthy lungs. In IPF, we detected a dramatic increase in the amount of KRT5+ cells and the emergence of a frequent KRT5+KRT14+ epithelial population, in particular in distal airways and alveolar regions. While the KRT14- progenitor population exhibited signs of proper epithelial differentiation, as evidenced by co-staining with pro-SPC, aquaporin 5, CC10, or MUC5B, the KRT14+ cell population did not co-stain with bronchial/alveolar differentiation markers in IPF. We provide, for the first time, a quantitative profile of the distribution of epithelial progenitor populations in human lungs. We show compelling evidence for dysregulation and aberrant differentiation of these populations in IPF.

93 citations


Journal ArticleDOI
31 Mar 2016
TL;DR: It is demonstrated that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases, and suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions.
Abstract: The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions.

Journal ArticleDOI
TL;DR: It is reported that disruption of Notch signaling in mice, particularly by Notch2, results in abnormal enlargement of the alveolar spaces reminiscent of that seen in chronic lung diseases.
Abstract: Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial-mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2(cNull)) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases.

Journal ArticleDOI
TL;DR: The impairment of mucociliary clearance in the epithelial cells provides an explanation why prior viral infection renders the host more susceptible to secondary co-infection by another pathogen.
Abstract: Virus-host interactions in the respiratory epithelium during long term influenza virus infection are not well characterized. Therefore, we developed an air-liquid interface culture system for differentiated porcine respiratory epithelial cells to study the effect of virus-induced cellular damage. In our well-differentiated cells, α2,6-linked sialic acid is predominantly expressed on the apical surface and the basal cells mainly express α2,3-linked sialic acid. During the whole infection period, release of infectious virus was maintained at a high titre for more than seven days. The infected epithelial cells were subject to apoptosis resulting in the loss of ciliated cells together with a thinner thickness. Nevertheless, the airway epithelium maintained trans-epithelial electrical resistance and retained its barrier function. The loss of ciliated cells was compensated by the cells which contained the KRT5 basal cell marker but were not yet differentiated into ciliated cells. These specialized cells showed an increase of α2,3-linked sialic acid on the apical surface. In sum, our results help to explain the localized infection of the airway epithelium by influenza viruses. The impairment of mucociliary clearance in the epithelial cells provides an explanation why prior viral infection renders the host more susceptible to secondary co-infection by another pathogen.

Journal ArticleDOI
TL;DR: It is shown that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis and a candidate gene for mucociliary disorders.
Abstract: Multiciliated cells are terminally differentiated, post-mitotic cells that form hundreds of motile cilia on their apical surface. Defects in multiciliated cells lead to disease, including mucociliary clearance disorders that result from ciliated cell disfunction in airways. The pathway controlling multiciliogenesis, however, remains poorly characterized. We showed that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis. GemC1 is specifically expressed in ciliated epithelia. Ectopic expression of GemC1 is sufficient to induce early steps of multiciliogenesis in airway epithelial cells ex vivo, upregulating McIdas and FoxJ1, key transcriptional regulators of multiciliogenesis. GemC1 directly transactivates the McIdas and FoxJ1 upstream regulatory sequences, and its activity is enhanced by E2F5 and inhibited by Geminin. GemC1-knockout mice are born with airway epithelia devoid of multiciliated cells. Our results identify GemC1 as an essential regulator of ciliogenesis in the airway epithelium and a candidate gene for mucociliary disorders.

Journal ArticleDOI
TL;DR: Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial‐targeted therapies.
Abstract: The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies.

Journal ArticleDOI
Marc Hild1, Aron B. Jaffe1
TL;DR: This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells, which provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the humanAirway epithelium in high-throughput assays.
Abstract: The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc.

Journal ArticleDOI
TL;DR: It is suggested that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagic inhibition as a novel therapeutic strategy for chronic airway diseases.
Abstract: Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases.

Journal ArticleDOI
TL;DR: Results indicate that Th17 cytokines may contribute to the development of CRSwNP by promoting a leaky mucosal barrier as indicated by a loss of TEER, increased paracellular permeability of FITC-dextrans, and discontinuous ZO-1 immunolocalisation.
Abstract: Cytokine mediated changes in paracellular permeability contribute to a multitude of pathological conditions including chronic rhinosinusitis (CRS). The purpose of this study was to investigate the effect of interferons and of Th1, Th2, and Th17 cytokines on respiratory epithelium barrier function. Cytokines and interferons were applied to the basolateral side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS with nasal polyp patients. Transepithelial electrical resistance (TEER) and permeability of FITC-conjugated dextrans were measured over time. Additionally, the expression of the tight junction protein Zona Occludens-1 (ZO-1) was examined via immunofluorescence. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Our results showed that application of interferons and of Th1 or Th2 cytokines did not affect the mucosal barrier function. In contrast, the Th17 cytokines IL-17, IL-22, and IL-26 showed a significant disruption of the epithelial barrier, evidenced by a loss of TEER, increased paracellular permeability of FITC-dextrans, and discontinuous ZO-1 immunolocalisation. These results indicate that Th17 cytokines may contribute to the development of CRSwNP by promoting a leaky mucosal barrier.

Journal ArticleDOI
12 Apr 2016-Lung
TL;DR: 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully.
Abstract: The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air–liquid interface. However, these 2-dimensional cultures lack a three dimension—a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.

Journal ArticleDOI
TL;DR: The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses.
Abstract: SummaryBackground The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. Objective To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Methods Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Results Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Conclusions Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β.

Journal ArticleDOI
TL;DR: It is demonstrated that the tumor suppressor p53 regulates both proliferation and differentiation of progenitors in the airway epithelium and shapes the understanding of stem cell quiescence during homeostasis and in cancer development.

Journal ArticleDOI
TL;DR: It is concluded that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters and that these processes may contribute to worsening respiratory disease in CFRD.
Abstract: The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3- transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3- removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3-, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.

Journal ArticleDOI
01 Mar 2016-PLOS ONE
TL;DR: It is demonstrated that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators, which may contribute local inflammation.
Abstract: Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.

Journal ArticleDOI
TL;DR: It is demonstrated that, through IL-1α production, AECs induce a pro-inflammatory lung fibroblast phenotype that is further enhanced with CSE exposure in COPD, suggesting an aberrant epithelial–fibroblast interaction in COPd.
Abstract: Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the mediators that are involved in remodelling and inflammation in COPD.AECs and fibroblasts obtained from COPD and control lung tissue were grown in co-culture with fetal lung fibroblast or human bronchial epithelial cell lines. mRNA and protein expression of inflammatory mediators, pro-fibrotic molecules and extracellular matrix (ECM) proteins were assessed.Co-culture resulted in the release of pro-inflammatory mediators interleukin (IL)-8/CXCL8 and heat shock protein (Hsp70) from lung fibroblasts, and decreased expression of ECM molecules (e.g. collagen, decorin) that was not different between control and COPD-derived primary cells. This pro-inflammatory effect was mediated by epithelial-derived IL-1α and increased upon epithelial exposure to cigarette smoke extract (CSE). When exposed to CSE, COPD-derived AECs elicited a stronger IL-1α response compared with control-derived airway epithelium and this corresponded with a significantly enhanced IL-8 release from lung fibroblasts.We demonstrate that, through IL-1α production, AECs induce a pro-inflammatory lung fibroblast phenotype that is further enhanced with CSE exposure in COPD, suggesting an aberrant epithelial-fibroblast interaction in COPD.

Journal ArticleDOI
TL;DR: It is reported that LXA4 strongly inhibited LPS-induced ALI in mice, in part by protecting the airway epithelium and preserving the E-cadherin expression and airway permeability.

Journal ArticleDOI
29 Aug 2016-PLOS ONE
TL;DR: It is shown that EMT is induced by TGF-β1 in airway epithelial cells and nasal tissue via activation of HDAC2 and HDAC4, and that inhibition of HDac2 andHDAC4 by TSA reduces TGF -β1-induced EMT.
Abstract: Background and Objectives Tissue remodeling is believed to cause recalcitrant chronic rhinosinusitis (CRS). Epithelial-mesenchymal transition (EMT) is a novel clinical therapeutic target in many chronic airway diseases related with tissue remodeling. The aim of this study was to investigate the effect of trichostatin A (TSA) on transforming growth factor (TGF)-β1-induced EMT in airway epithelium and nasal tissue. Materials and Methods A549 cells, primary nasal epithelial cells (PNECs), or inferior nasal turbinate organ culture were exposed to TSA prior to stimulation with TGF-β1. Expression levels of E-cadherin, vimentin, fibronectin, α-smooth muscle actin (SMA), histone deacetylase 2 (HDAC2), and HDAC4 were determined by western blotting and/or immunofluorescent staining. Hyperacetylation of histone H2 and H4 by TSA was measured by western blotting. After siHDAC transfection, the effects of HDAC2 and HDAC4 silencing on expression of E-cadherin, vimentin, fibronectin, α-SMA, HDAC2, and HDAC4 in TGF-β1-induced A549 were determined by RT-PCR and/or western blotting. We assessed the change in migration capacity of A549 cells by using cell migration assay and transwell invasion assay. Results TGF-β1 altered mRNA and protein expression levels of EMT markers including E-cadherin, vimentin, fibronectin, α-SMA, slug, and snail in A549 cells. Inhibition and silencing of HDAC2 and HDAC4 by TSA and siRNA enhanced TGF-β1-induced EMT in A549 cells. TSA blocked the effect of TGF-β1 on the migratory ability of A549 cells. In experiments using PNECs and inferior turbinate organ cultures, TSA suppressed expression of EMT markers induced by TGF-β1. Conclusions We showed that EMT is induced by TGF-β1 in airway epithelial cells and nasal tissue via activation of HDAC2 and HDAC4, and that inhibition of HDAC2 and HDAC4 by TSA reduces TGF-β1-induced EMT. This observation indicates that histone deacetylase inhibitors such as TSA could be potential candidates for treatment of recalcitrant CRS related with tissue remodeling.

Journal ArticleDOI
TL;DR: It is demonstrated that these two oxidant gases stimulate differing mechanistic responses in vitro and these responses occur at dissimilar times.
Abstract: Context: NO2 and O3 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activated.Objective: This work will test the premise that NO2 and O3 induce toxicity by activating similar cellular pathways.Methods: Primary human bronchial epithelial cells (HBECs, n = 3 donors) were exposed for 2 h at an air-liquid interface to 3 ppm NO2, 0.75 ppm O3, or filtered air and harvested 1 h post-exposure. To give an overview of pathways that may be influenced by each exposure, gene expression was measured using PCR arrays for toxicity and oxidative stress. Based on the results, genes were selected to quantify whether expression changes were changed in a dose- and time-response manner using NO2 (1, 2, 3, or 5 ppm), O3 (0.25, 0.50, 0.75, or 1.00 ppm), or filtered air and harvesting 0, 1, 4 and 24 h post-exposure.Resul...

Journal ArticleDOI
TL;DR: It is demonstrated that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator, and suggested Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudsomonas respiratory infections.
Abstract: Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.e., Esc(1-21) and its diastereomer, Esc(1-21)-1c, have recently shown potent activity against free-living and sessile forms of P. aeruginosa Importantly, this pathogen also escapes antibiotics treatment by invading airway epithelial cells. Here, we demonstrate that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator. A higher efficacy is displayed by Esc(1-21)-1c (90% killing at 15 μM in 1 h). We also show the peptides' ability to stimulate migration of these cells and restore the induction of cell migration that is inhibited by Pseudomonas lipopolysaccharide when used at concentrations mimicking lung infection. This property of AMPs was not investigated before. Our findings suggest new therapeutics that not only eliminate bacteria but also can promote reepithelialization of the injured infected tissue. Confocal microscopy indicated that both peptides are intracellularly localized with a different distribution. Biochemical analyses highlighted that Esc(1-21)-1c is significantly more resistant than the all-l peptide to bacterial and human elastase, which is abundant in CF lungs. Besides proposing a plausible mechanism underlying the properties of the two AMPs, we discuss the data with regard to differences between them and suggest Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudomonas respiratory infections.

Journal ArticleDOI
TL;DR: This work has investigated PAFr expression in the epithelium and Rbm of small airways and in the alveolar compartment in smokers and patients with both COPD and small airway disease.
Abstract: Background and objective PAFr is a cell adhesion site for specific bacteria, notably non-typeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae. We previously published that PAFr expression is significantly upregulated in the large airways of smokers, especially in COPD. We have now investigated PAFr expression in the epithelium and Rbm of small airways and in the alveolar compartment in smokers and patients with both COPD and small airway disease. Methods We evaluated PAFr expression cross-sectionally in resected lung tissue from: eight smokers with normal lung function (NLFS); 10 with smoking-related small airway narrowing only; eight COPD smokers; 10 COPD ex-smokers, and compared these with nine control tissues. Anti-PAFr immunostaining was quantified using computer-aided image analysis. Results Significantly increased PAFr expression in small airway epithelium of all clinical groups was found compared with controls (P < 0.01). Moreover, epithelial PAFr expression was upregulated in COPD smokers compared with NLFS (P < 0.05), but not when compared with COPD ex-smokers or patients with only small airways disease. Smoking history (pack-year) correlated significantly with PAFr expression in the currently smoking individuals, especially in NLFS (r = 0.9; P < 0.002). An increase above normal in PAFr-expressing cells in the airway epithelial Rbm was only significant in COPD smokers (P < 0.007). An upregulation of PAFr-expressing cell in alveolar epithelium was uniformly found in all clinical groups compared with normal control (P < 0.01). Conclusion Epithelial PAFr expression is upregulated in small airways and alveoli in smokers and COPD. Increased expression of PAFr could be crucial in facilitating acute and chronic respiratory infection with specific respiratory pathogens.

Journal ArticleDOI
TL;DR: Findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.
Abstract: In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.