scispace - formally typeset
Search or ask a question
Topic

Responsivity

About: Responsivity is a research topic. Over the lifetime, 9918 publications have been published within this topic receiving 186118 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The phototransistor demonstrates a simple and effective approach to continuously tune the detection capability of BP photodetectors, paving the way to exploit BP to numerous low-light-level detection applications such as biomolecular sensing, meteorological data collection, and thermal imaging.
Abstract: The narrow band gap property of black phosphorus (BP) that bridges the energy gap between graphene and transition metal dichalcogenides holds great promise for enabling broadband optical detection from ultraviolet to infrared wavelengths. Despite its rich potential as an intriguing building block for optoelectronic applications, however, very little progress has been made in realizing BP-based infrared photodetectors. Here, we demonstrate a high sensitivity BP phototransistor that operates at a short-wavelength infrared (SWIR) of 2 μm under room temperature. Excellent tunability of responsivity and photoconductive gain are acquired by utilizing the electrostatic gating effect, which controls the dominant photocurrent generation mechanism via adjusting the band alignment in the phototransistor. Under a nanowatt-level illumination, a peak responsivity of 8.5 A/W and a low noise equivalent power (NEP) of less than 1 pW/Hz1/2 are achieved at a small operating source–drain bias of −1 V. Our phototransistor dem...

75 citations

Journal ArticleDOI
TL;DR: In this article, a 10-Gb/s optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.13-μm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications is presented.
Abstract: We present a 10-Gb/s optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.13-μm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. The OEIC receiver consists of a CMOS-compatible avalanche photodetector (CMOS-APD), a transimpedance amplifier (TIA), an offset cancellation network, a variable equalizer (EQ), a limiting amplifier (LA), and an output buffer. The CMOS-APD provides high responsivity as well as large photodetection bandwidth. The TIA is composed of two-stage differential amplifiers with high feedback resistance of 4 kΩ. The EQ compensates high-frequency loss by controlling the boosting gain with a capacitor array. The LA consists of five-stage gain cells with active feedback and negative capacitance to achieve broadband performance. With the OEIC receiver, we successfully demonstrate transmission of 10-Gb/s optical data at 850 nm with a bit error rate of 10-12 at the incident optical power of -4 dBm. The OEIC receiver has the core chip area of about 0.26 mm2 and consumes about 66.8 mW.

75 citations

Journal ArticleDOI
TL;DR: A novel inorganic-hybrid architecture that incorporates a dual-phase (CsPbBr3-Cs4Pb Br6) inorganic perovskite material as a down-conversion window layer and a hybrid perovSKite as a light capture layer was prepared to achieve faster, highly sensitive photodetection in the DUV spectrum.
Abstract: Hybrid perovskite photodetectors (PDs) exhibit outstanding performance in the ultraviolet–visible (UV–vis) spectrum but have poor detectability in the deep ultraviolet (DUV) region (200–350 nm). In this work, a novel inorganic–hybrid architecture that incorporates a dual-phase (CsPbBr3–Cs4PbBr6) inorganic perovskite material as a down-conversion window layer and a hybrid perovskite as a light capture layer was prepared to achieve faster, highly sensitive photodetection in the DUV spectrum. A dual-phase inorganic perovskite film coated on the back surface of the photodetector enables strong light absorption and tunes the incident energy into emission bands that are optimized for the perovskite photodetector. The presence of Cs4PbBr6 enhances the capture and down-conversion of the incident DUV light. Due to the down-conversion and transport of the DUV photons, a self-driven perovskite photodetector with this composite structure exhibits a fast response time of 7.8/33.6 μs and a high responsivity of 49.4 mA ...

75 citations

Journal ArticleDOI
20 May 2016
TL;DR: In this paper, an ultracompact InGaAs photodetector based on a photonic crystal waveguide with a length of only 1.7μm and a capacitance of less than 1.fF was demonstrated.
Abstract: The power consumption of a conventional photoreceiver is dominated by that of the electric amplifier connected to the photodetector (PD). An ultralow-capacitance PD can overcome this limitation, because it can generate sufficiently large voltage without an amplifier when combined with a high-impedance load. In this work, we demonstrate an ultracompact InGaAs PD based on a photonic crystal waveguide with a length of only 1.7 μm and a capacitance of less than 1 fF. Despite the small size of the device, a high responsivity of 1 A/W and a clear 40 Gbit/s eye diagram are observed, overcoming the conventional trade-off between size and responsivity. A resistor-loaded PD was actually fabricated for light-to-voltage conversion, and a kilo-volt/watt efficiency with a gigahertz bandwidth even without amplifiers was measured with an electro-optic probe. Combined experimental and theoretical results reveal that a bandwidth in excess of 10 GHz can be expected, leading to an ultralow energy consumption of less than 1 fJ/bit for the photoreceiver. Amplifier-less PDs with attractive performance levels are therefore feasible and a step toward a densely integrated photonic network/processor on a chip.

75 citations

Journal ArticleDOI
TL;DR: In this paper, the detection mechanism of glow discharge plasma, derived from direct current gas breakdown, in neon indicator lamps was investigated in the terahertz and microwave regimes, and the analysis of the experimental results showed that the dominant mechanism of the glow discharge detector (GDD) in these regimes is enhanced cascade ionization.
Abstract: The detection mechanism of glow discharge plasma, which is derived from direct current gas breakdown, in neon indicator lamps was investigated in the terahertz and microwave regimes. Such devices exhibit high sensitivity to terahertz radiation. Experimental setups at 10, 100, and 250GHz were carried out and analyzed. The analysis of the experimental results shows that the dominant mechanism of the glow discharge detector (GDD) in these regimes is enhanced cascade ionization. Furthermore, the responsivity at 10GHz decreases with the increase in the dc bias current between the electrodes, while the responsivity at 100 and 250GHz increases with the dc current. This is attributed to electron-neutral atom collision frequency (ν) of the GDD being tens of gigahertz and its increasing with dc bias current according to dc field increase.

74 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
85% related
Photoluminescence
83.4K papers, 1.8M citations
84% related
Thin film
275.5K papers, 4.5M citations
84% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Band gap
86.8K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023848
20221,568
2021795
2020718
2019740
2018653