scispace - formally typeset
Search or ask a question
Topic

Responsivity

About: Responsivity is a research topic. Over the lifetime, 9918 publications have been published within this topic receiving 186118 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A hybrid phototransistor consisting of colloidal PbS quantum dots and few layers of MoS2 (≥2 layers) is demonstrated and shows responsivity of up to 10(6) A W(-1) and backgate-dependent sensitivity.
Abstract: A hybrid phototransistor consisting of colloidal PbS quantum dots and few layers of MoS2 (≥2 layers) is demonstrated. The hybrid benefits from tailored light absorption in the quantum dots throughout the visible/near infrared region, efficient charge-carrier separation at the p-n interface, and fast carrier transport through the MoS2 channel. It shows responsivity of up to 10(6) A W(-1) and backgate-dependent sensitivity.

618 citations

Journal ArticleDOI
TL;DR: Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range, and the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP's moderate bandgap.
Abstract: Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 μm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP’s moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry,...

598 citations

Journal ArticleDOI
TL;DR: In this article, a self-powered solar-blind photodetector with a sharp cutoff wavelength at 266 nm was constructed by a simple one-step chemical vapor deposition method, and showed an ultrahigh responsivity (9.7 mA W−1) at 251 nm with a high UV/visible rejection ratio (R251 nm/R400 nm) of 6.9 × 102 under zero bias.
Abstract: Highly crystallized ZnO–Ga2O3 core–shell heterostructure microwire is synthesized by a simple one-step chemical vapor deposition method, and constructed into a self-powered solar-blind (200–280 nm) photodetector with a sharp cutoff wavelength at 266 nm. The device shows an ultrahigh responsivity (9.7 mA W−1) at 251 nm with a high UV/visible rejection ratio (R251 nm/R400 nm) of 6.9 × 102 under zero bias. The self-powered device has a fast response speed with rise time shorter than 100 µs and decay time of 900 µs, respectively. The ultrahigh responsivity, high UV/visible rejection ratio, and fast response speed make it highly suitable in practical self-powered solar-blind detection. Additinoally, this microstructure heterojunction design method would provide a new approach to realize the high-performance self-powered photodetectors.

576 citations

Journal ArticleDOI
TL;DR: A grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries is reported, and the grating geometry enables more than three times narrower spectral response than observed for nanoantenna-based devices.
Abstract: In gratings, incident light can couple strongly to plasmons propagating through periodically spaced slits in a metal film, resulting in a strong, resonant absorption whose frequency is determined by the nanostructure periodicity. When a grating is patterned on a silicon substrate, the absorption response can be combined with plasmon-induced hot electron photocurrent generation. This yields a photodetector with a strongly resonant, narrowband photocurrent response in the infrared, limited at low frequencies by the Schottky barrier, not the bandgap of silicon. Here we report a grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries. The grating geometry also enables more than three times narrower spectral response than observed for nanoantenna-based devices. This approach opens up the possibility of plasmonic sensors with direct electrical readout, such as an on-chip surface plasmon resonance detector driven at a single wavelength.

570 citations

Journal ArticleDOI
22 Apr 2013-ACS Nano
TL;DR: Few-layered MoS2 as Schottky metal-semiconductor-metal photodetectors (MSM PDs) for use in harsh environments makes its debut as two-dimensional (2D) optoelectronics with high broadband gain, fast photoresponse, and high thermal stability.
Abstract: Few-layered MoS2 as Schottky metal–semiconductor–metal photodetectors (MSM PDs) for use in harsh environments makes its debut as two-dimensional (2D) optoelectronics with high broadband gain (up to 13.3), high detectivity (up to ∼1010 cm Hz1/2/W), fast photoresponse (rise time of ∼70 μs and fall time of ∼110 μs), and high thermal stability (at a working temperature of up to 200 °C). Ultrahigh responsivity (0.57 A/W) of few-layer MoS2 at 532 nm is due to the high optical absorption (∼10% despite being less than 2 nm in thickness) and a high photogain, which sets up a new record that was not achievable in 2D nanomaterials previously. This study opens avenues to develop 2D nanomaterial-based optoelectronics for harsh environments in imaging techniques and light-wave communications as well as in future memory storage and optoelectronic circuits.

560 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
85% related
Photoluminescence
83.4K papers, 1.8M citations
84% related
Thin film
275.5K papers, 4.5M citations
84% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Band gap
86.8K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023848
20221,568
2021795
2020718
2019740
2018653