scispace - formally typeset
Search or ask a question
Topic

Retinal

About: Retinal is a research topic. Over the lifetime, 24442 publications have been published within this topic receiving 718994 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The optical coherence tomograph is a new, noninvasive technical device that can obtain cross-sectional, high-resolution images-optical coherencetomographs (OCT)-of the retina that permits an accurate evaluation of various macular and chorioretinal pathologies and the early detection of glaucomatous damage.
Abstract: The evaluation of the optical coherence tomography (OCT) is based on the identification of differences in the relative reflectivity of different tissue layers and morphological changes in tissue structures. So the examination is able to localize and grossly demarcate inflammation in the vitreous cavity (by its dynamic analysis) or beneath retinal layers as well as detail retinal changes on the chronic phases of retinal disease like fibrosis, atrophy, or retinal edema.

4,458 citations

Journal ArticleDOI
TL;DR: The data suggest that VEGF plays a major part in mediating active intraocular neovascularization in patients with ischemic retinal diseases, such as diabetic retinopathy and retinal-vein occlusion.
Abstract: Background Retinal ischemia induces intraocular neovascularization, which often leads to glaucoma, vitreous hemorrhage, and retinal detachment, presumably by stimulating the release of angiogenic molecules. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific angiogenic factor whose production is increased by hypoxia. Methods We measured the concentration of VEGF in 210 specimens of ocular fluid obtained from 164 patients undergoing intraocular surgery, using both radioimmunoassays and radioreceptor assays. Vitreous proliferative potential was measured with in vitro assays of the growth of retinal endothelial cells and with VEGF-neutralizing antibody. Results VEGF was detected in 69 of 136 ocular-fluid samples from patients with diabetic retinopathy, 29 of 38 samples from patients with neovascularization of the iris, and 3 of 4 samples from patients with ischemic occlusion of the central retinal vein, as compared with 2 of 31 samples from patients with no neovascular disorders (P<0.00...

3,714 citations

Journal Article
TL;DR: The authors have described a reproducible and quantifiable mouse model of oxygen-induced retinal neovascularization that should prove useful for the study of pathogenesis and therapeutic intervention for retinal nvascularization in retinopathy of prematurity (ROP) and other vasculopathologies.
Abstract: PURPOSE To develop oxygen-induced retinopathy in the mouse with reproducible and quantifiable proliferative retinal neovascularization suitable for examining pathogenesis and therapeutic intervention for retinal neovascularization in retinopathy of prematurity (ROP) and other vasculopathologies. METHODS One-week-old C57BL/6J mice were exposed to 75% oxygen for 5 days and then to room air. A novel fluorescein-dextran perfusion method has been developed to assess the vascular pattern. The proliferative neovascular response was quantified by counting the nuclei of new vessels extending from the retina into the vitreous in 6 microns sagittal cross-sections. Cross-sections were also stained for glial fibrillary acidic protein (GFAP). RESULTS Fluorescein-dextran angiography delineated the entire vascular pattern, including neovascular tufts in flat-mounted retinas. Hyperoxia-induced neovascularization occurred at the junction between the vascularized and avascular retina in the mid-periphery. Retinal neovascularization occurred in all the pups between postnatal day 17 and postnatal day 21. There was a mean of 89 neovascular nuclei per cross-section of 9 eyes in hyperoxia compared to less than 1 nucleus per cross-section of 8 eyes in the normoxia control (P < 0.0001). Proliferative vessels were not associated with GFAP-positive astrocyte processes. CONCLUSIONS The authors have described a reproducible and quantifiable mouse model of oxygen-induced retinal neovascularization that should prove useful for the study of pathogenesis of retinal neovascularization as well as for the study of medical intervention for ROP and other retinal angiopathies.

1,596 citations

Book
10 Mar 2010
TL;DR: A proper understanding of the gliotic responses of Müller cells in the diseased retina, and of their protective vs. detrimental effects, is essential for the development of efficient therapeutic strategies that use and stimulate the neuron-supportive/protective-and prevent the destructive-mechanisms of gliosis.
Abstract: Muller glial cells span the entire thickness of the tissue, and ensheath all retinal neurons, in vertebrate retinae of all species. This morphological relationship is reflected by a multitude of functional interactions between neurons and Muller cells, including a 'metabolic symbiosis' and the processing of visual information. Muller cells are also responsible for the maintenance of the homeostasis of the retinal extracellular milieu (ions, water, neurotransmitter molecules, and pH). In vascularized retinae, Muller cells may also be involved in the control of angiogenesis, and the regulation of retinal blood flow. Virtually every disease of the retina is associated with a reactive Muller cell gliosis which, on the one hand, supports the survival of retinal neurons but, on the other hand, may accelerate the progress of neuronal degeneration: Muller cells protect neurons via a release of neurotrophic factors, the uptake and degradation of the excitotoxin, glutamate, and the secretion of the antioxidant, glutathione. However, gliotic Muller cells display a dysregulation of various neuron-supportive functions. This contributes to a disturbance of retinal glutamate metabolism and ion homeostasis, and causes the development of retinal edema and neuronal cell death. Moreover, there are diseases evoking a primary Muller cell insufficiency, such as hepatic retinopathy and certain forms of glaucoma. Any impairment of supportive functions of Muller cells, primary or secondary, must cause and/or aggravate a dysfunction and loss of neurons, by increasing the susceptibility of neurons to stressful stimuli in the diseased retina. On the contrary, Muller cells may be used in the future for novel therapeutic strategies to protect neurons against apoptosis (somatic gene therapy), or to differentiate retinal neurons from Muller/stem cells. Meanwhile, a proper understanding of the gliotic responses of Muller cells in the diseased retina, and of their protective vs. detrimental effects, is essential for the development of efficient therapeutic strategies that use and stimulate the neuron-supportive/protective-and prevent the destructive-mechanisms of gliosis.

1,507 citations

Journal ArticleDOI
09 Jul 1999-Science
TL;DR: The results suggest that PEDF may be of therapeutic use, especially in retinopathies where pathological neovascularization compromises vision and leads to blindness.
Abstract: In the absence of disease, the vasculature of the mammalian eye is quiescent, in part because of the action of angiogenic inhibitors that prevent vessels from invading the cornea and vitreous. Here, an inhibitor responsible for the avascularity of these ocular compartments is identified as pigment epithelium-derived factor (PEDF), a protein previously shown to have neurotrophic activity. The amount of inhibitory PEDF produced by retinal cells was positively correlated with oxygen concentrations, suggesting that its loss plays a permissive role in ischemia-driven retinal neovascularization. These results suggest that PEDF may be of therapeutic use, especially in retinopathies where pathological neovascularization compromises vision and leads to blindness.

1,468 citations


Network Information
Related Topics (5)
Retina
28K papers, 1.2M citations
97% related
Macular degeneration
12.8K papers, 433.2K citations
96% related
Glaucoma
31.5K papers, 738.2K citations
95% related
Visual acuity
32K papers, 797.1K citations
94% related
Intraocular pressure
25.2K papers, 607.8K citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,122
20224,725
20211,196
20201,235
20191,098
20181,076